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FOREWORD

The Thirty=Fourth Conference on the Design of Experiments in Army Research,
Development and Testing was held on 19-21 October 1988 in the auditorium of the
Physical Sciences Laboratory on the campus of New Mexico State University, Las
Cruces, New Mexico. Mr. John Lockert, Director of the White Sands Missile
Range, stated his installation would serve as the host for this meeting. He
selected Mr, William Agee to act as the chairperson for local arrangements.

The attendees appreciated the quiet and efficient manner in which this
gentleman handled the many tasks associated with this event, He is also to be
commended for his planning arrangements for a tutorial which was scheduled to
be held two days before the start of this conference.

The original format for the Design of Experiments Conferences, which are under
the auspices of the Army Mathematics Steering Committee (AMSC), was outlined by
the eminent statistician, Professor Samuel S. Wilks, who served as conference
chairman until his death. Through these symposia the AMSC hopes to introduce
and encourage the use of the latest statistical and design techniques into the
research, development and testing conducted by the Army's scientific and
engineering personnel. It is believed that this purpose can be best pursued by
holding these meetings at various government installations throughout the
country,

Members of the program committee were pleased to obtain the services of the
following distinguished scientists to speak on topics of interest to Army
personnel:

Speaker and Affiliation Title of Address

Professor Herbert A. David
Towa State University

Some Applications of Order
Statistics

Professor Ronald R, Hocking
Texas A&M University

Professors Donald L, Iglehart
and Peter W. Glynn
Stanford University

Professor Emanuel Parzen
Taxas A&M University

Professor Edward L. Wegman
Gecrge Mason University

iid

Diagnostic Methods - Variance
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Computational and Statistical
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Four days before the start of the planned two-day tutorial on "Topics in Modern
Regression Analysis", its speaker advised Mr, Agee he could not give his
planned lectures. Fortunately, Professor Ali Hadi of Cornell University was
able, so to speak, to save the day. The attendees were very pleased with Or,
Hadi's interesting and informative tutorial on “"Sensitivity Analysis in Linear
Regression",

Dr. Marion R, Bryson, Director of the U.S. Army Combat Development
Experimentation Center, was the recipient of the eighth Wilks Award for
Contributions to Statistical Methodologies in Army Research, Development and
Tasting. This honor was bestowed on Dr. Bryson for his many significant
contributions to the field of statistics. These started by providing ‘
statistical consulting while he was on the faculty of Duke University. This
era was followed by full-time work devoted to directing analytical studies for
the Army. Since then, he has provided overall technical direction to the
Army's most modern field test facility. His published works include papers on
a wide range of topics of importance to the Army, including methods for scoring
casualties, designing field experiments, and inventory control problems.

The AMSC has asked that these proceedings be distributed Army-wide to efnable
those who could not attend this conference, as well as those that were present,
to profit from some of the scientific {deas presented by the speakers. The
members of the AMSC are taking this opportunity to thank all the speakers for
their interesting presentations and also members of the program committee for
their many contributions to this scientific event.

PROGRAM COMMITTEE

Carl Bates Robert Burge Francis Dressel
Eugene Dutoit Hugh McCoy Carl Russell
Doug Tang Malcolm Taylor Jerry Thomas

Henry Tingey
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SOME APPLICATIONS OF ORDER STATISTICS"

He A. David
Department of Statistics
102D Snedecor Hall
lowa State Univarsity
Ames, IA 50011-1210

ABSTRACT. Suppuse that the random variables Xyseee,X, are arranged in
Lig € 00 € xn:n. Then X,.,, is called the r~th order

statistic (r = l,.ss,n). Order statistics, and functions thereof, have been
used extensively in such diverse areas as quality control, the estimation of
parameturs, life testing, data compression, selection procedures, and the
study of extreme meteorological phenomena. In this paper we focus on
applications of order statistics to (a) estimators that are resiatant to
outliers, (b) current measures of location and dispersion such as tha moving
median and the movirg range, and (c) some problems in reliability.,

ascending order as X

1, INTRODUCTION. If the random variables xl....,xn are arranged in
ascending order of magnitude and then written as

X_“n € ore € Xt:n € s § Xn:n,

we call X, the r=th order statistic (0S)(r = l,..s,n)s Usually X;,.us,X,
are assumed to be a random sample from some underlying population,

The subject of order statistics deals with the properties and applica-
tions of these ordered random variables and of functions involving them.

Examples are the gxtremes X;,, and X,,,, the range W, = X,, = X,,., the
extrame deviate (frow the sample mean) xn’n - X, and the maximum absolute
deviation from the median (MAD) DO nlxi - MI, vhera the median M
- poe o,
1
equals X {n odd) and (X + X ) (n even).
o+l i 2( (‘%):n (E + 1):n

2

All these statistics have important application. The extremes arise in
the statistical study of droughts and floods, as well as in problems of
breaking strength and fatigue failure, The range is well known to provide a
quick estimator of the population standard deviation g, whereas MAD is a more
recent estimator of ¢ valuable because of its high resistance to wild
observations (outliers). The extreme deviate ie a basic tool in the detection
of such outliers, large values of (xn_n - x)/a indicating the presance of an

*Keynote Address, 34th Conference on the Design of Experiments in Army
Research, Development and Testing, New Mexico State University, Las Cruces,
October 19, 1988. Prepared with support from the U. S. Army Research Office.




standardized bias and mean squared error (MSE) of Ln(a) under (2.1) can be
obtained with the help of tables of the first two moments of normal order
statistics in the presence of an outlier (David, Kennedy, and Knight, 1977),
For example, under (2.1) the standardized bias En(k) of Ln(m) is given by

EL (a) -u X,,. =wu
__.n =T aE i:n

o i a '

or

b (A = Laga, (M), (2.3)

where ai.n(k) is the expected value of Xi:n for U = 0, ¢ =1, Note
{in of the i-th 0§,

Z4,qs in random samples of n from a standard normal population. Clearly,

that “i'n(o) is just the widely tabulated expected value o

ai‘n(k) 18 a strictly increasing function of A, Also, since for A = =  (2,1)

leaves us with a random normal sample of size n = 1 plue an observation at %,
we have

Oli:n(w) = %=1 L= lyeeeyn-l ®nin (®) ==, (2.4)
(and likewise ai:n(.n) =% 1 1=2,040,n G1=n(-“) = o
Some results for samples of 10 are shown in Figures 1 and 2, where
: 10
3 1
xlo is the sample mean T f x1:10
1 9
Tlo(l) i8 the trimmed mean 8 2 xi:lOA
1 8
Wlo(Z) is the Winsorized mean ) (2x3=10 + g X0t 2X8:10)

1
TIO(A) is the median 2(X5:10 + x6:10)’ etc.

The figures are confined to A » O since results for A < O follow by skew-
symmetry in Fig. 1 and by symmetry in Fig. 2.
BIAS hn(x)' Since 8 ’ O\V/i we see from (2,3) that the bias is a strictly
increasing function of A for each of the estimators, and from (2.4) that
(™) = T ay a0y (2.5)
This gives the numerical values placed on the right of Fig. l. The jagged
graphs are the corresponding "stylized sensitivity curves" (Tukey, 1970;

Andrews et al., 1972) obtained by plotting Ln(al:n-l""'an-l:n-l’x)

against A, In particular, for the median we have
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1 -l
(a5, + 2] 3 * 0<A<a
med (a1-9""'°9-9'x) - | 6:9
3(d5,9 * 96.9) = 39,9 F 2
- 001372 6

The last result is the same as given by (2.5). In fact, each of the horizon-
tal lines serves as an asymptote to the corresponding bias function, It is
seen that the median performs uniformly best.

MEAN SQUARED ERROR MSE(A) . No clear-cut results emerge., The sample mean
does best for A < 1.5 but 1s quickly outclassed for larger A, Overall, T\4(1)
performg best, although the more highly trimmed TIO(Z) is slightly superior
for very large A,

EXTENSIONS

1. The intuitively appealing result that for symmetric unimodal distributions
the median is the least biased among the L, -estimators can be formally

established under (2.1) and also for a class of symmetric non-normal
distributions (David and Ghosh, 1985).

2. For n € 20 appropriately trimmed means still do well in the MSE sensa when
compared with much more complex estimators, but for A sufficiently large
and n not too small are inferior to the best of the adaptive estimators
such as Tukey's biweight (Mosteller and Tukey, 1977, p. 205). ’

3. An often used alternative outlier model replaces the second line of (2.1) by

X, ~ N(u, rzoz) 2y

For this model location estimators remain unbiased but their variance ia
increased., Since bias has been sidestepped, only the variance of the
estimator needs to be studied (David and Shu, 1978; Rosenberger and Gasko,
1983).

CASE OF SEVERAL EXTREME OUTLIERS. For q(l € q < % n) outliers Rocke (1986)

defines as a measure of outlier resistance of an estimator of location T the
"expected maximum bias"” Di(n,q) by

DT(n,q) = E{sup[|T(Zl=n_q,...,Zn_qzn_q,ll,-..,Aq)l}. (2-6)

where the supremum is taken over all possible choices of the constants
Al,....kq and the Z's are the normal 0S5, When T = Ly, the supremum will

evidently occur when the A's are all + ® or all - #», As Rocke points out, by
focusing on the worst case of bias one need not specify the usually unknown
distribution(s) of the outliers. It suffices to model the good observations
which more generally could be from any standardized distribution,

It appears that unwittingly Rocke does not use (2.6) but in fact works
with the standardized bias




D; (n,q) - E{T(zlm-q'”"zn‘q:n-q’."”"”' (2.7)

1f the good observations were independently generated from a unimodal
symnetric distribution (mode = maximum), then again the median can be shown to

*
have the least bias DT(n.q) among L,-statistics (Rocke's proof is incorrect;
see the appendix).

3. CURRENT MEASURES OF LOCATION AND DISPERSION

Let X; be a sequence of independant random variables with cdf F,(x)

(L1 = 1,2,004)s Then Sn(i) w (x ) may be called a moving sample of

i..!l’xi+n-1
i i
size n, and xi:i' the r-th 0§ of sn( ), the mwoving r-th 0S. Moving naxima

(r = n) and nminima (r = 1) were studied by David (1955) under homogeneity
(Fi(x) = F(x), L = 1,2,¢4¢,) in the course of an investigation of moving

ranges wn(i) " ngz - xif: (L = 1,2,s¢s)s The latter have a longer history

(Grant, 1946), being natural companions to moving averages on quality control
charts. Such charts ate particularly appropriate when it takes some time to
produce a single observation.

Moving madians are robust current measures of location and, like moving
averages, smooth the data; see, e.g., Tukey (1977, p. 210}, Cleveland and
Kleiner (1975) have used the moving midmean, the mean of the central half of

the ordered observations in each Sn(i), togattier with the mean of the top half
and the mean of the bottom half, as three moving descriptive statistics
indicating both location and dispersion changes in a time seriea.

Since Sn(i) and 8 1) involve common random variables iff
d & li - j' < n, we see that xif& and xﬁaz are independent for d?n and
dapendent otherwise, with n - d rv's in common, To begin with, we assume
homogeneity. Then the joint distribution of Sn(1> and sn<3) will be
stationary and will depend only on F(x), n, and d. We therefore consider
Sn<l) and Sn(1+d>, and more specifically xi‘) and x(1+d’

n sin
(r,s - 1,...,n]. Let

"gh(d) - Pr{rank (xi:i) = g, rank (X:::d)] - h}, (3.1)

where rank (Y) denotes the rank of Y in the combined sample Kipooo Xppqe It
follows that




(1) (1) ,
E(xf’“ *a:n ) zs.hﬂsh E(xs=n+d xh:n+d)’ (3.2)

This permits calculation of cov(x in terms of the first two

(1) x(1+d))
r:in’ “sin

moments of order statistics in samples of ntd from a distribution with cdf
F(x), since the “gh can be obtained by combinatorial arguments (David and
Rogers, 1983). The joint distribution of xifé and xggl has been investigated
by Inagaki (1980).

With the help of (3.2) it is possible to evaluate the auto-covariance
structure under homogeneity of the moving median and, in fact, of any linear

a’ - a o .
function nf the order statistiecs x( ) 1*11m + aa0 *+ Xain That is, we

can find

cov (G b § ’

e (1) grold)
&y ez

in terms of the first two moments of the 0S for sample sizes up to 2n=1 from a
dlstribution with cdf F(x).

Electrical engineers have made extensive use of moving order statistics
in digital filters. They view a moving sample as a window on a sequence of
signals X1y Xgyeee and spesk of median filters when using the moving median to

represent the current value of the signal, thezeby "filtering out” occasional
impulsive disturbances (outliiers)(e.g., Arce, Gallaghcr, and Nudes, 1986).
More generally, the madian may be replaced by @'z to give order statistie
filters (e.g., Bovik and Restrepo, 1987).

For example, suppose that in the automatic smoothing of a basically
stationary time series one is prepared to ignore single outliers but wishes to
be alerted to a succession of two or more high (or low) values. This calls
for use of moving medians in samples of three, since clearly a single outlier
will be smoothed out but two successive large valuer will result in two large
medians. The following small example illustrates the situation, where for _
purposes of comparison we have added the much less informative moving mean x

il
% 3 1 1 10 2 4 3 9 10 2 1
(1)
%513 1 1 2 4 3 4 9 9 2
X 2 1l 1 1 1
X, 15 4 43 55 3 55 713 7 43

When X;,X5,+.. are not iid, even the distribution of order statistics in




a fixed sample becomes complicated although a fairly elegant expression for
the pdf can be written down in terms of permanents (Vaughan and Venables,
1972) 1if the X's are not identically distributed but still independent., It is
easily seen that the moving median and other order statistics will reflect
trends except for a suoothing at the ends, Thus for the following sequence,
where the upward trend is underlined, we have

% s 2 13 4 6 9 12 1 17
xst) 2 2 3 4 & 9 12 12 1

- 2 2,1 .1 2 ) 2

% 2 2 24 W e 9 ui 12§ 10d

For a linear trend given by
xi-iT+Zi, i = 1,2,-01 (303)
where the Z; are i,i.d., we evidently have

u Dy - w ey o (gagy,

with covariances cov (Xi%&, x:f%) (r,s = 1,..,,n) independent of i,

Consider now a particular sample X;,Xp,eee,Xop g (m = 2,3,...) with
symmetric unimodal distributions. Then under (3.3), which need hold only for
the sample in question, we see that for >0

Pr{rank X, = 1} increases with T,

i
Thus X,,, will tend to lead the trend, reflect the current state, or lag the
trend according as r 5 m, and will do so increasingly as T increases; for

1<0, the results are reversed. However, in contrast to the sample mean,
whose variance remains unchanged under a linear trend, the variance of the
sample median increases with T. (I am indebted to Dr. W. J. Kennedy for some
computations verifying the latter intuitively obvious result.) Thus the use
of the median, under locally linear trend, is appropriate primarily as
protection against outliers. In this situation, but under nonlinear trend,
Rovik and Naaman (1986) congider the optimal estimation of EX, by linear
functions of order statistics,

4, SOME PROBLEMS IN RELIABILITY

There {8 a well-known immediate connection between order statistics and
the reliability of k—=out—-of-n systems.

Definition A k-out=-of-n system is a system of n components that functions 1if
and only if at least k (k ® 1,..s,n) of its components function., Series and
parallel systems correspond to k = n and k = 1,




Let X,(1 = 1,¢4syn) be the lifetime of the i~th component and
Ri(x) - Pr{xi > x} its reliability at time x (the probability that it will
function at time x). Then the reliability of the system S at time X is
Rg(x) = Pr{X _ 1.0 > %}
If the X; are independent (but not necessarily identically distributed) one
may write (Sen, 1970; Pledger and Proschan, 1971),
& -4,

n
Rg(x) = L 1 R(x) [l ~R(x)] 7,
s A el 1 1
> k. It ca be shown that a

n
where A, = 0 or 1, and A is the region ¢ A

i=]
series (parallel) system is at most (least) as reliable as the corresponding

i i

n

system of components each having reliability R(x) = % b Ri(x). An excellent
i=]

general account, covering also important situations when the xi are not

independent, is given in Barlow and Proschan, (1975).

I will conclude with a problem in reliability, quite different from the
above, that was suggested by an enquiry from Malcolm Taylor (see Baker and
Taylor, 1981). A fuze contains n detonators, r of which must function within
tine span t, The idesl requirement ¥ = n may be too demanding in practice and
r = n=-l suffices. The n times to detonation, X;,...,X,, may reasonably be

regarded, I was told, as a random sample from a normal population. Let
P(r; n,t) be the probability that at least r detonations have occurred in time t.

Now, for a random sample from any continuous distribution with edf F(x),
P(njn,t) is just

L I n-1
Pr{X , = X, <t} =nf_ [F(x+t) = F(x)]" " dF(x),
the cdf of the sample range (Hartley, 1942). Let A)' and A9 be the events

X - xlgn < t and xn= - x2:n < t, respectively, Then,

n=l:n n

P(n=1; n,t) = Pr{A;'U A}

= Pr{a,'} + Pr{a,} - Pr{A;'A,} (4.1)

The event Al' occurs if n=1 or n=2 of X;,+vs,X, fall in the interval
(xlzn'xl=n + t] and A; if n=2 of the X, are in (x2:n.x2:n + t]. Since A,
includes the event that n-1 of the X, are in (X;, ,X;,, + t], we can avoid
unnecessary duplication by replacing A;' in (4.1) by Ay, the event that
n+t]n

exactly n-2 of the X, are in (xl,n. X

1




We have immediately, writing n(j) = n(n=1) «.s (n=j+1), that

Pr{Al} - n(Z)j:, [F(x+t) = P(x) ] 2[1 = P(x+e)) dF(x)

and
pr{a} = a2, | -l
riA,} = oo LF(x4t) = F(x) F(x)dPF(x).
The joint occurrence of A) and Ay is illustrated below for n = 6. We

have

»~ — — et } — {

| | x+t y+t

xl:n = X xZ:n =y

Pr{AlAz} - n‘”f‘_',,f;"'“[rr(xﬂ) = Ky 1™ [R(y#t) = Flx+e)] dF(y)dF(x)

From these results P(n-1; n,t) has been tabulated in David and Kinyon
(1983) when F(x) = &(x). Note that P(n-l;n,t) may be interpreted as the

probability that at least n~1 out of n independent normal N(u,az) variates are
within an interval of length to.

EXAMPLE., As in Baker and Taylor {(1981) suppose that Xjsever X are independent

notmal variates with ¢ = 10-5. The entry P(6;7,3) = 0,9587 tells us that the:

probability of at least six detonations out of a possible saven within time
span 3o is 0.9587. By comparison, the probability of seven detonations is
only 0.,6601, as found from tables of the cdf of the range (Pearson and
Hartley, 1970). :

David and Kinyon (1983) also give an expression, involving a triple
integral, for P(n-=2; n,t). It should be noted that P(r; n,t) has received
much attention by quite different techniques in the aspecial case when the Xy
are independent uniform variates (e.g.,, Neff and Naus, 1980). From a
different viewpoint sgain, writing

P(r; n,t) = Pr{nn(ﬁ) < t},
where Ay
Hn(ﬁ) " min (x1+r-l:n - xi:n)'

1-1 geee ,n"'IH'I.

we may regard ﬁn(ﬁ) as a meagure of dispersion, In fact, ﬁn(a) ig the length

of the shorth, the shortest a=fraction of the ordered sgmple (Andrews et al.,

1972). It has recently been shown (Gribel, 1988) that Hn(a) is asymptotically
normal (for fixed a).
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APPENDIX
Hs A. David and C. C. Yang

Correction to 'Outlier resistance in.uunll gamples’
By DAVID M. ROCKE
Biometrika (1986), 73, 175-81
The author does not stay with his own definition of DT(n,q) but in fact uses
Dp(n,q) = E{T(zl....,zn_q,O,....ﬂ)}.

Even with this change the proof of the theorem on p. 176 is in error since the
combinatorial term associated with § _ should be (::2), not (n;q). However,

since § _ = 6. » the theorem follows directly from Case 2 nf David and

Groeneveld (Biometrika (1982), 69, 227-32) and has essentially been provad in
P. K. Sen (Ed,) Biostatistics (1985) North-Holland, pp. 309=11.
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MULTI-SAMPLE FUNCTIONAL STATISTICAL DATA ANALYSIS

Emanuel Parzen
Department of Statistics
Texas A&M University
College Station, Texas 77843-3143

ABSTRACT. This paper discusses a functional approach to the problem of compar-
lson of multi-samples (two samples or ¢ samples, where ¢ > 2). The data consists of ¢
random samples whose probability distributions are to be tested for equality. A diversity
of statistics to test equality of ¢ samples are presented in a unified framework with the
aim of helping the researcher choose the optimal procedures which provide greatest insight
about how the samples differ in their distributions. Concepts discussed are: sample distri-
bution functions; ranks; mid-distribution function; two- aam&l’e t test and nonparametric
Wilcoxon test; multi-sample analysis of variance and Kruskal Wallly test; Anderson Darling
and Cramer von Mises tests; components and linear rank statistics; comparison distribu-
tion and comparison density functions, especially for discrete distributions; components
with orthogonal polynomial score functions; chi-square tests and their components.

1, INTRODUCTION. We assume that we are observing a variable Y in ¢ cases or sam-
ples (corresponding to ¢ treatments or ¢ populatlonal. The samples can be regarded as the
value of ¢ variables Yj,...,Y; with respactive true distribution functions Fy(y),...,F (g)
and quantile functiona Q;(u?, oyl ,,(13. We call Yj,...,Ys the conditioned variables zt e
value of Y in different populations),

The general problem of comparison of conditioned random variables is to model how
their distribution functions vary with the value of the conditioning variable k = 1,...,¢,
and in particular to test the hypothesis of homogeneity of distributions: L

The distribution F to which all the others are equal is considered to be the unconditional
distribution of Y (which is estimated by the sample distzibution of Y in the pooled sample).

2. DATA. The data consists of ¢ random samples
Yi(0)i=1,...,n
for k=1,...,¢. The pooled sample, of size N = ny + ...+ ng, represents observations of

the pooled (or unconditional) variable Y. The ¢ samples are assumed to be independent
of each other.

8. SAMPLE DISTRIBUTION FUNCTIONS. The sample distribution functions of
the samples are defined (for —~00 < y < o0) by

Fi"(y) = fraction <y among Yy(.).
The unconditional or pooled sample distribution of Y is denoted
F*(y) = fraction <y among Yy(.),k=1,...,c

We use “ to denote a smoother distribution to which we are comparing a more raw
gistribgtign which is denovted by a ”. An expectation (mean) computed from a sample is
enoted E°,

Research Supported by the U.S. Army Research Office
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4. RANKS, MID-RANKS, AND MID-DISTRIBUTION FUNCTION. Nonparamet-
ric statistics use ranks of the observations in the pooled sample; let

Ri(t) denote the rank in the pooled sample of Yj(t).

One can define Ry(t) = NF"(Yy(t)).

In deﬁnin& linear rank statﬁtics one transforms the rank to a number in the open unit
interval, usually Rk(tc? /(N +1). We recommend (Ri(t) — .5)/N. These concepts assume
all observations are distinct, and treat ties by using average ranks. We recommend an

approach which we call the “mid-rank transform® which transforms Yj(t) to Py (1)),
degning the mid-distribution function of the pooled sample Y by

P(y) = F(y) = .8p(v).
We call
p"(y) = fraction equal to y among pooled sample
the pooled sample probability mass function.

5. SAMPLE MEANS AND VARIANCES. When the random variables are assumed
to be normal the test statistics are based on the sample means (for k = 1,...,¢)

Y~ = E"[Y] = (1/ng) ZlYk(*)'
t=

We interpret Yj,~ as the sample conditional mean of Y given that it comes from the kth
population. The unconditional sample mean of Y is

Y- =E[Y|=p1Y1"+ ...+ p.Yc,
defining N
Pk = ng

to be the fraction of the pooled sample in the kth sample; we interpret it as the empirical
probability that an observation comes from the kth sample.
The unconditional and conditional variances are denoted

VAR[Y] = (1/N) Y Eh{Yk(J') -1y
ksl yml
VARYi] = (1/n) D _{¥i(s) - i}
J=1

Note that our divisor is the sample size N or nj rather than N — ¢ or ny — 1, The latter
then arise as factors used to define F' statistics.
We define the pooled variance to be the mean conditional variance:

[
02 =) pj VAR'[Y}]
k=1
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6. TWO SAMPLE NORMAL T TEST. In the two sample case the statistic to test
Hpj is usually stated in a form equivalent to
T = {Yy" - Yo} /o {(N/(N - 2))((1/n1) + (1/n2))}®

We believe that one obtains maximum insight (and analogies and extensions) by expressing
T in the form which compares Yy~ with ¥

T = {(N = 2)p1/(1 - p)}* (11" = ¥"}/o"
The exact distribution of T is ¢(N — 2), t-distribution with /N — 2 degrees of freedom.
7. TWO-SAMPLE NONPARAMETRIC WILCOXON TEST. To define the popuiar

Wilcoxon non-parametric statistic to test Ho we define W), to be the sum of the n; ranks
of the Y}, values; its mean and variance are given by

E[Wy] = ng(N +1)/2, VAR[W}] = ning(N + 1)/12
The usual definition of the Wilcoxon test statistic is
Ty = {Wy — EW|}/{VAR[W]}®,

The approach we describe in this paper yields as the definition of the nonparametric
Wilcoxon test statistic (which can be verified to approximately equal the above definition

of T, up to a factor {1 ~ (1/N)?}5)

Ty = {12(N = 1)p.1/(1 - p.1)}*(Ry - 8},
defining

ny
Ry~ = (1/nq) ) (Ry(t) - B)/N
{we]
= (W1/mN) - (1/2N)
One reason we prefer this form of expressing non-parametric statistics is because of its
relation to mid-ranks:
Ry~ = E[P"(Ya)]

One should netice the analogy between our expressions for the parametric vest statistic
T and the nonparametric test statistic T'; the foriner has an exact t(N — 2) distribution
and the latter has asymptotic distribntion Normal{0,1}.

8. TEST OF EQUALITY OF ¢ SAMPLES NORMAL CASE. The homogeneity of
c samples is tested in the parametric normal case by the analysis of variance which starts
with a fundamental identity which in our notation is written

[
VART(Y] =Y pi{¥i ~ ¥)? + 02
k=1
The F test of the one-way analysis of variance can be expressed as the statistic

[
T2 =Y pilTel%,
k=1
a
= N (1= pg)ITF %,
k=1

17
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defining
Tpy=(N-e){Yp -Y}/o
TFp={(N ~¢)px/(1 - p)}{Vi - Y}/o"

The azymptotic distribution of T%/(¢c~1) and TF? are F(c~1,N —¢) and F(1, N —e¢)
respectively.

9. TEST OF EQUALITY OF ¢ SAMPLES NONPARAMETRIC KRUSKAL-
WALLIS TEST. The Kruskal-Wallis nonparametric test of homogeneity of ¢ samples
can be shown to be

TKW? = zc:(l - p.k)|TKWk|2.
k=1
TKW), = {12(N = 1)p4/(1 - p.x)} *{Ry~ - .5}

The asymptotic distributions of TKW? and TK W,? are chi-squared with ¢~ 1 and 1
degrees of freedom respectively.

10. COMPONENTS. We have represented the analysis of variance test statistic T

and the Kruskal-Wallis test statistic TKW?2 as weighted sums of squares of statistics T F},
and TKW), respectively which we call components, since their values should be explicitly
calculateu to indicate the source of the significance (if any) of the overall statistics, Other
test statistics that can be defined can be shown to correspond to other definitiorns of
components,

11, ANDERSON DARLING AND CRAMER VON MISES TEST STATISTICS. Im-
portant among the many test statistics which have been defined to test the equality of
distributions are the Anderson-Darling and Cramer-von Mises test statistics. They will
be introduced below in terms of representations as weighted sums of squares of suitable
components.

12. COMPARISON DISTRIBUTION FUNCTIONS AND COMPARISON DEN.-
SITTY FUNCTIONS. We now introduce the key concepts which enable us to unify and
choose between the diverse statistics available for comparing several samples. To compare
two continuous distributions ¥(.) and H(.), where H is a true or smooth and F ix a model
or raw, we define the comparison distribution function

D(u) = D(u; H,F) = F(H"(u))
with comparison density
d(u) = d(u; H, F) = D'(u) = (B~ (u))/h(H 1 (v)).

Under Hp : H = F, D(u) = u and d(u) = 1. Thus testing Hy, is equivalent to testing
D(u) for uniformity.

Sample distribution functions are discrete. The most novel part of this paper is that
we propose to form an estimator D"(u) from estimators H ;g and F~(.) by using a general
definition of D(.) for two discrete distributions H(.) and F'(.) with respective probability
mass functions py and py satisfying the condition that the values at which py are positive
include all the va}{ues at which pp are positive,
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18. COMPARISON OF DISCRETE DISTRIBUTIONS. To compare two discrete
distributions we define first d(u) and then D(u) as follows:

d(u) = dlw; B, ) = pp(dH () /o (W),
D(u) = /0 d(t)dt.

We apply this definition to the discrete sample distributions F* and F”, to obtain
dl:(“) = d(u; F°, Fk~)
and its integral D;,"(u?.

We obtain the following definition of dj,"(u) for the ¢ sample testing problem with all
values distinct:

di"(v) = N/ng if (B(4) = 1)/N <u < R(j)/N\ g = 1,000 ynpy
=0, otherwise,

A component, with score function J(u), is a linear functional

T, (J) = /0 ' J(u)dp"(u)du

It equals . @/
h s Ru(9)/N
1/n,)) SN J(u)du
(i) & /(R.(j)—l)/zv )
which can be approximated by E"[J(P*(Ys))].

14. LINEAR RANK STATISTICS. The concept of a linear rank statistic to compare
fih?i equality of ¢ samples does not have a universally accepted definition. One possible
efinition is

)
Ty'(J) = (1/m) 3_ I (Rild) = B)/N)
y=1
However we chnose the definition of a linear rank statistic as a linear functional of dj"(u),

which we call a component; it ia approximately equal to the above formula.
We define

1
T(9) = (¥ ~ 1) VARUD)lpa/(3 - p)* [ T - 13 0
where U is Uniform{0,1}, E[J(U)] = fol J(u)du,
VAR|J(U)] = j(;l{J(u) — E[J(U)]}2du.
Note that the integral in the definition of T},"(J) equals

1
/0 J(u)d{Dy"(u) ~ u}.
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The components of the Kruskal-Wallis nonparametric test statistic TK W2 for testing
the equality of ¢ means have score function J(u) = u — .5 satiefying

E[J(U)] = 5, YAR[J(U)] =1/12.
The components of F test statistic 72 have score function
J(u) = {Q"(v) - Y"}/o"

where Q*(u) is sample quantile function of the pooled sample Y.

15. GENERAL DISTANCE MEASURES. General measures of the distance of D"(u)
from u and of d'(u) from 1 are provided by the integrals from 0 to 1 of

(T(w) -1}, (D(u) -u}?, {D"(u) -u}}/u(l —u), {d'(uv)-1}?

where d*(u) is a smooth version of d”(u). We will see that these measures can be decom-
posed into components which may provide more insight; recall basic components are linear
functionals defined by (!) '

T(J) = /;1 J(u)d(u)du.

If ¢;(u),s=0,1,2,..., are complete orthonormal functions with ¢g = 1, then Hp can
be tested by diagnosing the rate of increase (as a function of m = 1,2,...) of

[ () - 1720 = 370

tm]l
which measure the distance from 1 of the approximating smooth densities

| din(u) = 3 T (¢4)i(u).

fm]
16. ORTHOGONAL POLYNOMIAL COMPONENTS. Let p;(z) be Legendre poly-

nomials on (-1,1):

pi(z) =z

p3(z) = (3z% - 1)/2,

p3(z) = (82> — 3z)/2,

p4(z) = 3524 ~ 3022 + 3.
Define Legendre polynomial score functions

$Li(n) = (28 + 1) ®p;(2u - 1),

One ::ia.n show that an Anderson-Darling type statistic, denoted AD(D"), can be repre-
sente

1
AD(D") = /o ({D"(6) = 1}/l - u)}du

=2 IT(BL)/GG + 1))

=1




Define cosine score functions by
¢Ci(u) = 28 coa(inu).

One ::la.n show that a Cramer-von Mises type statisti:, denoted CM(D"), can be repre-
sente

CM(D) = /o (D" () - u)Pdu

(-]
=Y |T"(8C}) %/ (im)?
i=1
In addition to Legendre polynomial and cosine components we consider Hermite poly-
nomial components corresponding to Hermite polynomial score functions

$H;(u) = ()P H; (27 (u)
where H;(z) are the Hermite polynomials:
Hj(z) = =,
Hy(z) = 2 -1,
Hg(z) = 2’ - 3z,
Hy(z) = 24 - 62% + 3,

17. QUARTILE COMPONENTS AND CHI-SQUARE. Quartile diagnostics of the
null hypothesis Hy are provided by componenta with quartile “square wave” score functions

5Qi(uv) =-2% O0<u<.25
= 0, 25 < u < .75,
=28  s<uc<y;
$Qa(u) =1, 0<uc<.25
= =], 26 < u <.75,
=1, < u<l; .
SQs(u) =0 fo<u<.250r.78<u<1,

= —2'5, -25 < u < .5,
— 2'5, .5 < u < -750

A chi-squared portmanteau statistic, which is chi-squared(3), is

3
CQu=(N-1p/(1-pp) Y IT(5Q)) N
e T

1
= (N =1)pk/(1-px) [o {dQu(u) - 1}*du

defining the quartile density (for ¢ = 1,2,3,4)

dQi(x) = 4{D}"(s(.25)) — Dy ({3 - 1).25), (5 — 1).25 < u < i(.25)




A pooled portmanteau chi-squared statistic is

CQ=) (1-prCQ
k=1

18, DIVERSE STATISTICS AVAILABLE TO TEST EQUALITY OF ¢ SAMPLES.
The problem of statistical infareence is not that we don’t have answers to a given question;
usually we have too many answers and we don't know which one to choose. A unified
framework may help determine optimum choices. To compare ¢ samples we can compute
the following functions and statistics:

1) comparison densities: dj"(u)
2) comparison distributions Dy (u),
3) quartile comparison density dQ(u), quartile density chi-square

1
CQu = (N = Dpa/ (2 - 2a) [ {0Qu(u) = 1)2ds.

4) non-parametric regression smoothing of dz“(u) using a boundary Epanechnikov kernel,
denoted di"*(u),

5) .\:'f'egendre components and chi-squares up to order 4 are defined using definition (1) of
At
TL(4) = Ty (4 Ly)
m
CLy(m) = 3 ITLy(5) 2

i1

CL(m) = Y _(1 ~ p.k)CLi(m)

k=1
o0
ALg = |TLy($)2/i(5 +1)
jax]
[}
AD =" (L-pj)ADy

ko
6) Cosine components and chi-squares up to order 4 are defined:
TC(7) = Tp"(¢C%)

CCi(m) = 3 |TCy()?

t.ml

CC{m) =Y (1 - p.x)CCi(m)
k=1

CM), = i TCk(3) |/ (im)?

1=]

¢
CM =3 (1-pr)CMy
k=1




7) Hermite components and chi-squares up to order 4 are defined:
THy(s) = Ty (¢ H;)
m
CHy(m) = 3 |THy(3)?

i=]

CH(m) = D _(1 = p4)CHy(m)
k]

8) density estimators di"(u) computed from components up to order 4,
9) entropy measures with penalty terms which can be used to determine how many
components to use in the above test statistics

19. EXAMPLES OF DATA ANALYSIS. The interpretation of the diversity of siatis-
tics available is best illustrated by examples.

In order to compare our methods with others available we consider data analysed by
Boos (19863 on ratio of assessed value to sale price of residential property in Fitchburg,
Mass., 1970, The samples (denoted I, II, III, IV) represent dwellings in the categories
single-family, two-family, three-family, four or more families. The sample sizes (54, 43,
31, 28) are proportions .346, .276, .19, .179 of the size 156 of the pooled sample. We
compute Legendre, cosine, Hermite components up to order 4 of the 4 samples; they are
asymptotically standard normal. We consider components greater than 2 (3) in absolute
value to be significant (very significant).

Legendre, cosine, and Hermite components are very significant only for sample I,
order 1 (-4.06, -4.22, -3.56 respectively). Legendre components are significant for sample
IV, orders 1 and 2 (2.19, 2.31). Cosine components are significant for sample IV, orders I
and II (2.36, 2.23) and sample III, order 1 (2.05). Hermite components are significant for
sample IV, orders 2 and 3 (2.7 and -2.07).

Conclusions are that the four samples are not homogeneous (have the same distribu-
tions). Samples I and IV are significantly different from the pooled sample. Estimators
of the comparison density show that sample I is more likely to have lower values than the
pooled sample, and sample IV is mora likely to have higher values. While all the statistical
measures described above have been computed, the insights are provided by the linear rank
statistics of orthogonal polynomials rather than by portmanteau statistics of Cramer-von
Mises or Anderson-Darling type.

£20. CONCLUSIONS. The goal of our recent research (see Parzen (1979), (19832)
on unifying statistical methods (especially using quantile function concepts) has been to
help the development of both the theory and practice of statistical data analysis. Our
ultimate aim is to make it easier to apply statistical methods by unifying them in ways
that increase understanding, and thus enable researchers to more easily choose methods
that provide greatest insight for their problem. We believe that if one can think of several
ways of looking at a data analysis one should do so. However to relate and compare the
a.nsw_er:l, and thus arrive at a confident conclusion, a general framework seems to us to be
required.

One of the motivations for this paper was to understand two-sample tests of the
Anderson-Darling type; they are discussed by Pettitt (1976) and Scholz and Stephens
(1987). This paper provides new formulas for these test statistics based on our new def-
inition of sample comparison density functions. Asymptotic distribution theory for rank
processes defined by Parzen (1983) is given by Aly, Csorgo, and Horvath (1987); an excel-
lent review of theory for rank processes is given by Shorack and Wellner (1988).




However one can look at k sample Anderson-Darling statistics as a single number
formed from combining many test statistics called components. The importance of com-
ponents is also advocated by Boos 81986), Eubank, La Riccia, and Rosenstein (1987) and
Alexander (1989). Insight is greatly increased if instead of basing one’s conclusions on
the values of single test statistics, one lonks at the components and also at graphs of the
densities of which the components are linear functionals corresponding to various score
functions. The question of which score functions to use can be answered by considering
the tail behavior of the distributions that seem to fit the data.
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Reliability of the M256 Chemical Detection Kit

David W. Webb & Linda L., C. Moss
U.S. Army Ballistic Research Laboratory

Abstract

The U.S. Army nses the M256 Chemical Detection Kit (CDK) to indicate the presence
or absence of certain agents in the battlefield, which is indicated by a color change on the kit.
Strength of response is also influenced by the quaritity of agent, Lots must meet reliability
specificutions to be considered "battle-ready”. How do we go about collecting and analyzing
our data so as to evaluate its reliability? Other problems of interest include quantifying how
the agent quantity affects the response and if there are differences between the two manufac-
turers of the M256 CDK. Consultants at the Ballistic Research Laboratory have employed 4
dose-response framework to study the reliability problem. We use a binary response
(present/not present) and assume a lognormal distribution in arriving at a response curve for
each lot. Assessments of our approach and suggestions for alternative approaches are asked
of the panel,

27




Description of Kit

The M256 Chemical Detection Kit (CDK) is used to detect the presence/absence of
dangerous concentrations of toxic agents by color-changing chemical reactions. Each CDK
contains twelve samplers, which are the actual testing devices. Four types of agents can be
detected with the CDK. The tests indicate

a) if it is permissible to remove the protective mask following an agent attack,
b) if agent is present in the air or on surfaces suspected of contamination,
c) if any agent is present after decontamination operations.

The U.S. Army requires that the samplers exhibit at least a 92.5% reliability (with 90%
confidence) in responding to agent concentrations at the specification levels. However, the
kit should not be so sensitive that soldiers wear their mask at safe levels of concentration,
thereby interrupting other battlefield duties.

On the back of each sampler are complate instructions for testing and colored examples
of safe and danger resporses. After performing the test, a paper test spot is checked for any
change of color. The color change will not usually be an exact match with the colors shown -
on the back of the sampler. This is because the response depends upon the agent quantity.
To make matters more complex, when the agent is present the observed response may be
nonuniform with a few shades of the danger response showing.

Test Conditions & Restrictions

The lots of kits differ in manufacturer (A or B), age (1-8 years), and storage site (8 sites
in the United States and Europe). Not all combinations of these three factors are
represented in the design matrix; in fact, the design matrix is very sparse. For example, there
was only one lot that was eight years old.

Most lots contain ten or mbre kits (therefore, 120 or more individual samplers). Some
lots contained as many as 1000 kits, while others had as few as one kit.

We are restricted to the number of samplers that may be tested at any time since the
test chamber is large enough to hold only six samplers. Another restriction lies in the fact that
testing laboratories are only available for the length of time designated in the work contract.
This usually is no more than two months.




The test equipment that controls the concentration of ageut in the test chamber is very
accurate and precise, but it is slow. It may take about an hour to change to a higher concen-
tration. When going from a high to a low concentration, the waiting period may be several
hours since the high concentration tends to leave a residual amount of agent in the test
chamber.

Our Approuch

We have decided to evaluate each agent and the chosen lots separately, From each
manufacturer, we have selected one lot from the available age groups. Also, we have tried o
choose lots of similar age from the manufacturers so that they can be paired and we can look
for general trends. In all, we have chosen fifteen lots ranging in age from 1 to 8 years,
Although the sites are in varying climatic areas, most of the warehouses are humidity and
temperature controlled; therefore the locations are treated as homogenous. Differences
existing between manufacturers are not considered in our initial design, but will be addressed
later,

We have taken the route of estimating the reliability of each lot at the specification level
of each agent. We have also chosen a dose-response type experiment, where our dose is the
agent concentration and the response is safe/danger. For the purpose of determining
response, U.S. Army manuals specify a set of nine color chips that progressively range from
the "safe" color to the "danger" color. The manual also states a cutoff color for the Bernoulli
response. (In most cases, color chips 1-3 correspond to a safe response, while chips 4-9 are
considered danger responses.)

We have made the assumption that the response curves follow that of the lognormal
cumulative distribution function with unknown mean and standard deviation, The lognormal
was selected based on historical precedent, although we note that the log-logistic would have
also been a reasonable choice.

To choose the concentration levels at which to run the tests, we have considered several
candidate sequential designs. In light of some of our restrictions, however, none of these
would be very practical (e.g., Robbins-Monro would have required too much laboratory
time).

Instead, we have chosen a two-stage "semi"-fixed design. In the first stage, 11 samplers
are tested at seven different levels; one concentration level set at an estimated mean, three
concentrations above this estimated mean, and three concentration levels below the
estimated mean, each being a multiple of the standard deviation away from the mean, Mean
and standard deviation estimates are based on the results of a pretest (which for the purpose
of brevity is deleted from this presentation). The multiple of the standard deviation is chosen
so that the specification level will be covered by the seven test concentrations.
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Stage I
Concentration  Number of Samplers

By - 31&9 1
B, - 28 1
B - kal 2
Ry 3
B + k8 2
B, + 1
A, + 3):81 1

11

Note: k is chosen so that the seven test concentrations cover the specification level, 2, and 8,
come from the pretest.

At the conclusion of Stage I, the data are analyzed using the DiDonato-Jarnagin max-
imum likelihood sstimation algorithm to produce new estimates of the parameters, ﬁ, and
8, . In Stage II, nine more units are tested at five concentration levels; one level set at the
new estimated mean, and at two levels above and below this, each now being a multiple of the
new standard deviation from the mean,

Stage Il

Concentration Number of Samplers

20
%’; 5, 2
3

o
2% :
9

At the conclusion of Stage II, the parameter estimates for the lot are re-evaluated using
all 20 data points, giving us a final 4 and 8. With these final estimates, the .925 quantile is
estimated by 2 + 2,5, 8.

By taking the variance of the above equation, we get an estimate of the variance of the
925 quantile,

Var(fl) + (z( 925)) Var(3) + 2 2 925) Cov(p, )

(The DiDonato-Jarnagin algorithm gives the values of the variances and covariance term,) If
the one-sided 90% upper confidence limit of the .925 quantile is less than the specification
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concentration, then we can conclude that the lot meets the requirement for that particular
agent,

We do not have a statistical technique per se for detecting significant differences
between manufacturers or sites. Our "approach" would be to simply look for any obvious
trends or differences. To study the age issue, a separate accelerated life test will be con-
ducted at a later date.

Questions
1. Is our approach appropriate for determining an extreme quantile?

2. Can one estimate a quantile when considering more than two possible responses (e.g.,
the nine color chips)?

3. How might we statistically cormnpare the reliability of the manufacturers (or sites)?

Concluding Remarks

Following our presentation, we heard comments and suggestions from the clinical ses-
sion panelists and audience. Two major concerns were expressed by several persons, First
was uneasinessd towards our assumption of a log-normal distribution. Some respondents felt
this to be a potentially dangerous assumption, especially since we are estimating the tail of
our distribution. Secondly, some persons questioned our method of e¢stimating the mean of
the distribution, and then extrapolating to the .925 quantile. These two problems could lead
to some very erroneous conclusions,

In general, the comments we heard confirmed our beliefs that this is a very difficult
problem to analyze, in light of the small sample sizes and other laboratory constraints to
which the test is subjected, Although no definitive alternative approaches arose “rom our dis-
cussions, some possible attacks that were suggested to us included --

1. Sampling more towards the tails of the distribution.

2. Isotonic regression.

3. Testing at the specification level and employing a general linear model approach
with the color chip number corresponding to the color change as the response and

age, manufacturer, and storage site as variables.

We would like to thank the panelists and audience for their many suggestions and
remarks.




COMPARISON OF RELIABILITY CONFIDENCE INTERVALS

Paul H, Thrasher
Engineering and Analysis Branch
Reliability, Availability, and Maintainability Division
Army Materiel Test and Evaluation Directorate
White Sands Missile Range, New Mexico 88002-5175

ABSTRACT

Some confidence intervals on reliabilities are investigated. Only
binomial events are considered. Only the narrowest two-sided and the upper
one-sided confidence intervals are calculated. Three methods of estimating
the distribution of reliabilities are reviewed and compared. These are the
Fisherian approach, the Bayesian approach with the ignorant prior, and the
Bayesian approach with the noninformed or noninformative binomial prior. Both
the width and location of the confidence intervals differ for these three
methods.

INTRODUCT ION

Reliability estimates are not as straightforward as might be expected.
Measurement of a number of successes x in a sample size n quickly leads to a
point estimate of the reliability R equal to x/n. Estimates of confidence
intervals are more difficult to obtain however. Two things in addition to the
data are needed for confidence interval estimation. First, some function must
be used to describe the reliabilities. Second, a method must be selected to
locate the confidence interval within the function.

The purnose of this paper is to compare various functions describing
reliabilities. For simplicity, all tested items will be assumed dichotomous
and independent. That is, the binomial b(x;n,R) is assumed to describe the
random variable x if n and R are known. The problem is to select a function
for R when x and n are known. The three functions considered here are based
o1 {1) the Fisherian approach and (2) the Bayesian technique using prior
distributions of R when (A) R is equally 1ikely to be any value between zero
and one and (B) R is unknown numerically but it is known to be a binomial
parameter .

To focus attention on the comparison of the confidence intervals from
these three functions, the methods used to locate the confidence intervals are
restricted in this paper. Only two methods are used in calculations; one is
one-sided and the other is two-sided.

Preceding Page Blank
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The one-~sided confidence interval considered is the upper confidence
interval, This is based on the premise that having a reliability too low is
much more serious than the reliability being toc high,

The two-sided confidence interval considered is the narrowest possible
(Rankin). This is illustrated in Figure 1. It is Tocated by adjusting the
confidence 1imits until (1) the sum of the areas under.the tails is 4 and (2)
the functions of these two limits are equal. This correspondence of narrowest
interval with equal heights is a geometrical property. It is not based on the
choice of the function describing R. It may be demonstrated by (1) starting
with the confidence 1imits of points equal heights, (2) moving the left
confidence 1imit to the right, and {3) noting that the right 1imit has to be
moved further to the right in order to keep the sum of the areas under the
tails constant. This is shown in Figure 1 by the dashed lines. A similar
argument starts by moving the narrowest confidence 1imit to the left.

Other possible two-sided confidence 1imits, not calculated in this paper,
are illustrated in Figures 2 and 3. These are the traditional equal-division-
of-area-under-the-tails interval and the maximum-1ikelihood-estimator-in-the-
center interval., The first is the easiest to calculate. The second has a
symetric appeal but it 1s non-existant when the peak of the curve is not at
R=0.5 and l-g4 15 sufficiently large.

FISHERIAN APFROACH
The traditional Fisherian appkoach (Mann, Shafer, and Singpurwalla)
considers sums of binomial probabilities. This approach yields two Beta
functions., The lower confidence 1imit is obtained from one Beta function; a

second function is needed for the upper limit.

L.ower Confidence Limit:

The lower (1-4)100% confidence 1imit R is defined by P[R>R]=l-4. An
alternate expression is P[R<R]=a. The 1imit R is the largest value of R that
makes the data x and n plausible. Plausibility is defined as satisfaction of
the degree of confidence l-q of correctly selecting the right R. The lower
100% confidence Timit of R fs R=0 because all values of R satisfy R;0.
Increasing R requires a decrease in l-q or an increase in 4. This increase in
R shifts the binomial distribution of the possible measurements 1 which
resulted in the single measurement x. For the limitira case of R«0, the




binomial b(i;n,R) consists of a single spike of unit height at i=0. As R and
a increase, b(i;n,R) takes a shape illustrated in Figure 4 and described by

b(1n,R) = (:) &1 (1_&)n-1

where the number of ways of obtaining i successes in n trials if found from by

ny nl ] n(n=1)...(n=1+1)
(1 > il (n=1)! 1(1=1)...(1)

The extent of the shifting from the single spike is determined by the data
x and n. The value of R is determined in two steps. First, R is increased
until the sum b(x;n,R)+b(x+1;n,R)+...4+b(n;n,R) equals the probability 4 making
the confidence relation P[R¢R]=y or P[R>R]=1l-4 untrue. Second, the continuous
variable R s decreased infinitesimally making the confidence relation
P[R>RJ=1-4 just barely valid. Thus R is neither too large or too small to be
a (1-¢4)100% lower confidence 1imit on R when

o 3 () v
12x ,

The extraction of R from this equation can be facilitated by using a Beta
function as described in the following paragraph., Before doing that however,
it 1s expedient tu note that a measurement of x=0 implies that R=0 for all
values of g, This special case isn't algebraically included in the following
Beta function. It is adroitly described by an argument based on Figure 4:
when x=0, R has to be 0 to make b{(0;n,R)=1 and b(i;n,R)=0 for all iO0.

The Beta function of R is

r(a+h)

- a=1 ¢q_pib-1
)+ AR

f(R)

where a and b are parameters. Using the equality of the‘gamma function p(J)
and the factorial (J-1)! when j is an integer yields

i (atb-1)!
(a-1)!{b-1)!

£(R) Re-1 (1-R)0-1,
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Postulating that the reliability is described by f(R) and setting the area to
the left of R at 4 ylelds

: )
a= [ f(R) dR.
of (

Repeated integrations by part yield

+hel
o <a+?-1> k! (1-R)2¢b-1-1,
i=a

Comparison of this summation and the summation for 4 in the previous paragraph
yields a=x and a+b-lun, Thus the parameters in the Beta function for the
Tower 1imit R are a=x and b=n+l-x.

Upper Confidence Limit:

The upper confidence 1imit R defined by P[Réﬁj-l-a is obtained from
another Beta function. Arguments similar to those in the proceeding section
yield the upper Beta function in four steps:

(1) R s in the binomial sum

«e (:)E‘ (-,

(2) T is the lower limit of integration over the second Beta function

ar [R) aR,
7

(3) repeated integrations by parts transform this integral to the sunmation

' 4bh'a - -
a ac-l [a ! R1 (l'R)a.+b|-1.1n and
120 i

(4) the second Beta function parameters are identified by x=a'-1 and
nsa'+b'-1l to be a‘=x+]l and b'=n-x,




This Beta function does not describe R when x=n because p(b')=p(0)=(0-1)!
is meaningless. For this special case, R=1 for al a+ This may be seen from
a binomial distribution symmetric to Figure 4. Using an R near 1 and an o
containing binomial terms from j=0 to j=x=n, it is easily seen that 4 is 1
even when R is 1, Since R continuous, R=sl for any value of l-g.

BAYESIAN APPROACH

The Bayesian approach (Martz snd Waller) uses the data x and n to update
a prior distribution g(R) describing R to a posterior distribution g(R|x)
describing R after x is given. The algebraic relation between these two is
based on the equality of the joint density h(x,R) to both the product
g(R|x)f(x) and the product T(x|R)g(R). Thus the posterior is found from

9(R|x) = f(x{R) 9(R) / f(x).

This expression is simplified by noting that (1) the conditional density of x
given R is

F(x|R) = b(x;n,R) -_(:>R" (1-R)N=X

and (2) the marginal density f(x) from the integral of h(x,R)=f(x|R)g(R) is

f(x) = fl f(x|R) g(R) dR = fl (") R* (1-R)"¥ g(R) dR.
0 0 X

Thus the general posterior is

R¥ (1-R)™*  g(R)

g(R|x) =

0;1 R* (1-R)"* g(R) dR




Ignorant Prior:

One prior that can be used is the uniform distribution g(R)=1 for O¢Rgl
and g{R)=0 elsewhere, This is sometimes called the ignorant prior because all
values of R between 0 and 1 are equally 1ikely. That is, there is no evidence
to favor the selection of any value of R over any other R between 0 and 1.

Use of this prior in the general posterior yields

X (1.r)\N-X
(R [x) » e

[ RX(1-R)NX dR
0

Integration by parts evaluates the denominator. The posterior is thus

2
9(R|X) - I‘(n+ ) R(X*l)-l (I_R)(n-xﬂ)-l.

r(x+l)r{n=x+l)

This is a Beta function with parameters a=x+l and b=nex+l.

Noninformed Prior:

A second prior that can be used recognizes that the reliability is a
binomial parameter but has no information about its value. This is sometimes
called the noninformed or noninformative binomial prior.

Every noninformed prior 1s based on a transformation making the
probability density insensitive to the data. For the binomial parameter R in
b(x;n,R), 1t has been empirically found (Box and Tiao) that plots of
K(x,n)b(x;n,e) versus ¢ yleld very similar curves for fixed n and different
x's when (1) K(x,n) is determined by numerical integration to make the area
under K(x,n)b(x;n,q) equal to one and (2) ¢ is given by

o " Arcsin(R/2)

Figures 5 and 6 show that for 0<x<n these similar curves become nearly equally
spaced along the ¢ axis as n is increased. The noninformed argument assumes
that all n+l curves are essentialy equal and equally spaced for all n. This




makes being noninformed about x equivalent to being ignorant about 4. The
prior assumption that (1) x 1s unknown but (2) the situation is described by
the one of these curves thus leads to a prior distribution of 4 that is
uniform between 4=0° and ¢=90°. The corresponding prior of R may be found
from the transformation of variable technique (Freund and Walpole) by applying

d
a(R) = h(y) H
dr

Using h(e)=1 and sin(¢)-R1/2 in this equation yields g(R)-l/{Z[R(l-R)]l/z}.
Use of this binomial noninformed prior in the general posterior yields

RX-I/Z (1_R>n-x-1/2
g(R|x) = .

fl r(x+1/2)-1 (1-R)("-X+1/2)-1 dR
0

The denominator 1s recognized as an integral over a Beta function. It is

evaluated to be p(x+1/2)p(n-x+1/2)/p(n+l). The posterior is thus found to be
a Bata function with asx+1/2 and b=n-x+1/2,

COMPARISON OF CONFIDENCE INTERVALS
The three methods reviewed in the previous sections have been applied to
confidence intervals on reliability. Both two-sided and one-sided intervals
have been investigated.

Narrowest Two-Sided Intervals:

Figures 7 through 15 show distributions and narrowest two-sided 80%
confidence intervals, Figure 7 1llustrates the symmetry about x=n/2, Thus
graphs for x<n/2 are not needed to investigate trends. Figure 8 1s one
example of the destruction of symmetry by making x>n/2. Figure 9 shows that
when x=n the symmetry is so completely destroyed that the narrowest two-sided
intervals are actually upper one-sided intervals., Figures 10, 11, and 12 and
Figures 13, 14, and 15 show the effect of increasing n: for fixed x, the
confidence intervals all become narrower but the relationship of the
Fisherian, ignorant, and noninformed intervals retains an order,
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The effect of changing x for fixed n is seen to be a change in the order
of the Fisherian, ignorant, and noninformed intervals, The Fisherian interval
seems to be the widest. For x near n/2, the Ignorant interval seems to be
narrower than the noninformed interval. For x near n however, the noninformed
interval seems to be the narrowest of the three,

Upper One=Sided Intervals:

Figures 16 through 31 show distributions and upper one-sided 90%
confidence intervals on reliability, The lower confidence 1imit appears 1ower
for the Fisherian analysis than for the Bayesian analyses., The Bayesian
ignorant and noninformed priors seem to lead to two sets of results. The
lower confidence 1imit appears lower for the noninformed when x is near n/2
but higher for the noninformed when x 1s near n,

The symmetry of the Beta functions makes the lower confidence 1imits for
x near 0 such that the Fisherian is lowest, the noninformed Bayesian is next
Towest, and the ignorant Bayesian 1s the highest of the three. This is shown
in Figures 25 though 28, These figures and Figures 29 through 31 also show
that large n leads to fairly close agreement between the three methods.

CONCLUSION

The three methods are all on sound theoretical ground but give different
results. No single method provides most logical contidence intervals, The
choice betwean methods has to be based on goals and philosophy. Since the
Fisherian method leads to the widest confidence intervals, it is the most
conservative approach. Since proponents of the Bayesian method prefer priors
which contain more information than the ignorant or noninformed prior, the
Bayesian method (without a prior based on previous tests/calculations) does
not meet all the goals of analysts with a Bayesian philosophy. Thus the
Fisherian method seems to be a good, conservative method for the initial
analysis. This initial analysis can provide a prior for a future Bayesian
analysis of addition data from a future test.
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Environmental Sampling: A Case Study

Dennis L. Brandon

US Army Engineer
Vatervays Experiment Station
Vicksburg, Mississippi 39180

Abstract Sampling strategies have beaen developed to accomplish
various environmental objectives. The objectives may be: (1) to
estimate the average of characteristics in a population; (2) t¢ estimate
the variability of characteristics of interest in a population; (3) to
decide if characteristics of interest in a population meet certain
standards or criteria; (4) to identify the source(s) wvhich caused
characteristics in a population to exceed standards. A study desigred to
achieve objectives 3 and 4 will be presented. Modifications and
alternate approaches will also be discussed.

Background Navigable wvaterways of the United Ststes have and will
continue to play a vital role in the nation’s development. The Corps, in
fulfilling its mission to maintain, improve, and extend these vatervays,
is responsible for the dredging and disposal of large volumes ¢f sedimant
each year. Nationwide, the Corps dredges about 230 million cubic yards
in msintenance work and about 70 million cubic yards in nev dredging
annually at a cost of about $450 million. In accomplishing its national
dredging and ragulatory missions, the Corps has conducted axtenasive
research and development in the field of dredged material management.
Federal expenditures on dredged material research, monitoring, and -
management activities have cumulatively exceeded §100 million.

Techniques developed to evaluate contaminant mobility in dredged material
can be appliad to other contaminated aresms. Accordingly, the plant and
animal biocassays are two techniques developed to assess the environmental
impact of dredged material in vetland and upland disposal environments.
These bioassays, surface soil samples, groundwater samples, and
additional plant tissuas vere used to evaluate a contaminated site in
vestern California.

The case study site is approximately 200 acres with both upland and
vetland areas (see Figure 1). This site was known to have very high
concentrations of metals in surface soils. Hajor pathways for
contaminant mobility are the meandering stream which flows north and the
d;ai::gc gitchcl. Also, tidal inundation affects a substantial portion
of this sgite.

The objectives of the study vere to: (1) define the extent of the
hazardous substance contamination on the site; (2) identify the sources
of the hazardous substances detected on the proparty; (3) evaluate the
extent of migration of the hazardous substances on the property; (4)
assess the bioavailability, mobility, and toxicity of the hazardous
substances detected on the property; (5) evaluate the condition of the
vetland and upland habitats on the property. This paper focuses on the
use of soil samples to achieve objectives 1 thru 4.
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Figure 1. Map of Study Area

74




SAMPLING PLAN The sampling plan was formulated hased on previous
soil and vater data, historical information, and tha potential pathways
for contaminant mobility. The sampling locations are shown in Figure 1.
Three samples were collected at some locations and one sample was
collected at the other locations. The triplicate samples were used in
statistical comparisons. This sampling plan reduced the cost of the
investigation by allowing a selected number of sample locations to be
tested extensively while other sample locations receivad one-third the
cost and effort. A total of 178 samples were collected and analyzed for
As, Cd, Cu, Fb, Ni, Se, and 2n.

There is an analogy between the strategy used here and the disposal
philosophy of many Corps elements. Most dredging and disposal decisions
are made at the local level on a case by case basis. Often, the
environmental objective is to prevent further degradation of the disposal
arca. Therefore, samples are collected at the dredge site and disposal
site. A statistical evaluation performed on the chemical analysis of the
sanples becomes the basis for determining whether degradation will occur.
In this study, samples were collected at the remote reference area and an
area of degradation (i.e. contamination). Ten triplicate samples were
collected in the remote reference area. Twenty-eight triplicate samples
vere collected in the area of contamination. Locations having a mean
concentration of metals in soil, plants, or animals statistically greater
than similar data from all remote reference locations were declared
contaninated. These concentrations provide a judgemental basis for
classifying the 64 single sample locations.

Three sources of contamination were identified from historical
information. One additional source vas indicated by the soil analysis
and later verified with historical information. Sources were thought to
be areas with several high metal concentrations in a vicinity and a
gradual decrease in metal concentrations as one moves avay from this
area. The sources found in this study appeared to have released metal in
tvo different forms. One method was to bury or discharge contaminants
associated with a solid material in an area. The other source discharged
highly contaminated liquids into a stream. Identifying sources vas
further complicated by the fact that some of the discharges were
intermittent and possibly hadn’t occurred in several years. This study
was successful in jdentifying sources which discharged contaminants
associated with solids. 7Tdentifying the source of liquid discharges was
more difficult due to seascnal fluctuation of the stream.

The soil analysis was partially successful in achieving objiectives 1
thru 4. The extent of contamination from known sources was established
and locations requiring further investigation wvere identified. This plan
has been augumented with additiona) sempling. These samples further
delineated th.. extent of contamination horizontally across the site and
vertically down the soil profile. As a result of this study, 26.5 acres
were declared contaminated.




A Generalized Gumbel Distribution

Siegfried H. Lehnigk
Research Directorate
Research, Development, and Engineering Center
U.S. Army Missile Command
Redstone Arsenal, AL 35398-5248
A generalized Gumbel (extreme value type I) distribution class is
introduced. In addition to the usual shift and scale parameters this new
distribution contains an arbitrary positive shape parameter. The classical
Gumbel distribution results as special case for shape equal to unity.
Microcomputer-based algorithms for estimation of the parameters are present-
ed. They are based on the moment equations and on the logarithmic likelihood
function associated with the distribution density. A program diskette for
microcomputer use will be made available upon request. A combined paper by

this author and Charles E. Hall, Jr., will be published elsewhere.

77



A Generalization of the Eulerian Numbers with a

Probabilistic Application

Bemard Harris
University of Wisconsin. Madison
C.J. Park
San Diego State University

1 Introduction and Historical Summary

In this paper we study a generalization of the Eulerian numbers and a class of polynomials related
to them. An interesting application to probability theory is given in Section 3. There we use these
extended Eulerian numbers to construct an uncountably infinite family of lattice random variables
whose first n moments concide with the first n moments of the sum of n + 1 uniform random
variables. A number of combinatorial identities are also deduced.

The Eulerian numbers are defined by
L, [ n+t : - .
Ay = 2 (=1)" G=o)"J=0,1,2,..,m% nu0,1,2,. (1)
vee v
They satisfy the recursion
Ay = JAnt y HB= 5 + 1) Anet ymt (2)
and the Worpitzky [25] relation
2 -1
z‘-z(zﬂ )Aq. (3)
Jul n
Also,
Apj - A\.-]Ol ’ (4)
Y Aynnl (3)

T
In addition, they possess a numbe: of combinatorial interpretations which are described below.
Let Xy = {1,2,...,n} and let P,(k) be the number of permutations of the elements of X,
having exactly k increases between adjacent elements, the first eiement always being counted as
an increase.
For n = 4, the 24 permutations and the number of increases are given in Table 1.1.
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1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
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As seen from the tabulation, P4(1) = 1, P,(2) = 11, P4(3) = 11, P,(4) = 1, which concides
with A4,/ = 1,2,3 4, '

Let |
An(t) = EAN'tj- ©
-
Then
1-1¢ oo .
1 —texp[z(1l —t)) = ’§An(t)m ILIRE DY N

The above relations and some of their properties can be found in [8]; the polynomials (6) are
also discussed in L. Carlitz [4]. These results may also be found in the expository paper of L,
Curlitz [3]. The formulas (1) and (2) are also given in L, v, Schrutka [21].

. Désiré André [1] established that A,y is the number of permutations of {X,} with y “elementary
inversions”, He also established that A, is the number of circular permutations of { X, } with j
“slementary inversions”. The equivalence of these two results with the enumeration of the number |
of increases in permutations of {X,} can be trivially established.

G. Frobenius [15] studied the polyomonials

An(5) -}”:14“;5’, (8)
=
introduced by Euler, and established many of their properties. In particular, relations with the
Bernoulli numbers are given in [15).

In D. P. Roselle [20], the enu.neration of permutations by the number of rises, A,;, is related
to enumeration by the number of successions, that is, a permutation 7 of {X,} has a succession if
m(1) =+ 1,6=1,2,...,n

Some number theoretic properties of Ay are given in L. Carlitz and J. Riordan {7] and in L.
Cartitz [5].

In this paper, we study a generalization of the Eulerian numbers. A generalization in a dif-

fzrent direction wes given by E. B, Shanks [22], who apparently did not note a connection of his

-coefficients with the Eulerian numbers. L. Carlitz [2] noted the relationship of Shank's results to




the Eulerian numbers and obtained representations for these generalized Eulerian numbers using
. results due to N. Nielsen [17]. '
F. Poussin [18] considered the enumeration of the number of inversions of permutations of
‘{X,‘} which endin j,1 < j < n This produces a decomposition of the Eulerian numbers, She
also introduced a polyomial generating function for these numbers. The sums of these polynomials
" are the Euler-Frobenius polynomials. .

Another deomposition of the Eulerian numbers with a combinatorial interpretation is given by
J.F. Dillon and D.P. Roselle [12]. ,

J. Riordan [19] lists many properties of the Eulerian numbers in Exercise 2, page 38-39 and de-
scribes the combinatorial interpretation of the Eulerian numbers in terms of triangular permutations
(which is equivalent to the elementary inversions described by André [1]). He also gives a brief
table of the Eulerian numbers on page 215. Ses also L. Comtet [10], where generating functions for
the Eulerian numbers are given and the Eulerian numbers are obtained by enumerating the number
of permutations with a specified number of increases. Many properties of the Eulerian numbers are
given as well as their historical origins in terms of sums of powers, |

EN. David and D.E. Barton [11] suggest the use of the Eulerian numbers as a statistical test for
the randomness of a sequence of observations in time, employing the probability distribution given
by

Pyj=Ay/nl, j=1,2,...,n (9)

The generating function (7) is derived and employed to obtain the moments and cumulants
of the distribution (9). In particular, David and Barton show that the factorial moments are the
generalized Bernoulli numbers. However, David and Barton do not make any identification of
these distributions with the Eulerian numbers.

Using probabilistic arguments, Carlitz, Kurtz, Scoville and Stackelberg [6] showed that the Eu-

lerian numbers, when suitably normalized, have an asymptotically standard normal distribution,

This was accomplished by representing the distribution Py, as the distribution of a sum of indepen-




dent Bernoulli random variables. S. Tanny [24] demonstrated the asymptotic normality by utilizing
the relationship of the Evlerian numbers to the distribution of the sum of independent uniform ran-
dom variables and applying the central limit theorem.

L. Takdcs [23] obtained a generalization of the Eulerian numbers which provide the solution
to a specific occupancy problem. Namely, let a sequence of labelled boxes be given, the first box
labelled 1, the second box 2, and so on. At trial number n distribute [ balls randomly in the first
n boxes so that the probability that each ball selects a specific box is 1/n and the selections are
stochastically independent. For [ = 1, the probability that j — 1 boxes are empty after trial number
nis Ay/nl,j = 1,2,...,n Takdcs’ paper contains many references and describes additional
combinatorial problems whose solution is related to the Eulerian numbers.

Finally, L. Toscano [25] obtained formulas expressing the Eulerian numbers in terms of Stirling
numbers of the second kind.

2 Generalized Eulerian Numbers

We now introduce a generalization of the Eulerian numbers and investigate its properties.
Let & be an arbritrary real number and let
J

Av(5)=z(n+l)(-1)°(5+J'—v)".2'-0.1..-..n:n-0.1.2.-~- (10)
v

v=0

These polynomials are mentioned in L. Carlitz, D.P. Roselle and R.A. Scoville [8]. As noted
there, A,y (0) are the Eulerian numbers. These polynomials are also used by P.S. Dwyer [13] to
calculate sample factorial moments, Dwyer does not relate these to the Eulerian numbers.

We begin our analysis with the following theorem:

Theorem 1. Letn and k be non-negative integers and let § be any real number. Then
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J=0 vm0 v

" 1
'™ (8) = ;3—2(5 + )W }5 ( n ) (=D(6+j~0)"

- ;11' ,5:}‘“ /Y0 44 (8) (11)

is independentof §for k= 0,1,...,n
Proof. The following identity (see N. Nielsen, [17], page 28) will be utilized in the proof.

<m—8>"-i(z+j_l)f:c—li"(":1 )caw-v)". (12)

Jn0 n v=0

Let A and E be the operators defined by

A(f(z)) = f(z+1) ~ f(z)

and
E(f(z)) = f(z+1).
Then, it can be shown that (C, Jordan, [16])
A" = (=1 ( " ) E'-, (13)
y=0 v

In particular, forr=0,1,...,n,
AT(E+ 7)Y m Yo (=1) ( : ) (6+j+r=D0
=0
= D8+ )0, (14)

the last equality follows from elementary properties of the function (& + j)'™ (C. Jordan, [16], p.
51), Thus, forr=0,1,...,n, from (12) we have

(6.+ /)™ = Y= 1)} ( : ) (§+j+r—B® /", (13)

=0
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Hence,

1
g™ (8) = -—):<8+;)<*> 2: ( nt ) (~1)¥(6+ - v)"

j-O va0 v

Ntk - |
L:Eozo(_”‘(ﬂ zk )‘““""‘"""’i("” )(—1)"<6+j-u>"/n<-*».
v

('L 11]
(16)
Thus, it follows that
=k - - - |
b (8) = (-1 ( nk )E ( Iun ) f:( 1, ( n* ) (&+j—u)"/rf™H,
{mD l j=0 n vad v
(i7)
Settingz = §+ n— k- L+ 1 in (12) we get
- + 1
(n—k=1l+1)"= Z(8+n ¢ H.])}:( 1)"( )(54-}'—-1;)"
Jm0 n (1}
and hence
-k
u® (8 = $3(-1) ( ) (n=k =L+ 1)"/nrb (18)
(=0

and is independent of &,

In particular, piy ™ (8) = 1, iV (6) = (2% = 1)/ and p, o™ (8)
= (3" =2m w /nn=1), piaqaf®(6) = L3P

A brief table of ;)™ () fork = 0,1,2,3 andn=0,1,2,3 is given in the Appendix to this
paper.

The Nielsen identity (12) seems to have been discovered in a somewhat less general context by
Paul S. Dwyer [13], who employed it to calculate factorial moments by means of cumulative sums;
see also Ch. A. Charalambides [9], who in addition to discussing Dwyer’s work also showed that

these generalized Eulerian are related to enumeration of compositions of integers.




The following corollary will be subsequently employed.
Corollary. Let nand k be non-negative integers with k < n. Then

. ,
(8)--—5_‘,(8+ )"}:( n )(—1)"(8+7’-—v)" (19)
juo val v
is independent of .
. Proof. We can write
(6+J)"-E/3ra(5+1)"" (20)

rmQ

where G, are the Stirling numbers of the second kind. Since the coefficients 8,4 do not depend on
8, substituting (20) into (19) and interchanging the order of summation, we get

k
M (8) = 3 Brapg™ (8), (21)

por
which is independent of 6.

Prior to demonstrating that the independence of §, noted in Theorem 1 and its corollary can not
be extended to k = n+ 1, we will need to calculate the derivative of u " (8). Thus, we have:
Theorem 2. Let nund &k be non-negative integers and let § be any real number. Then

[k
L (6) = ki (8) - 2( ).pﬁ"'”w). 22)
r

ru0

Proof. Since

vm0

uﬁ"’(6)= Z(5+ )"‘2( )(—1)"<6+J‘~v>",

dﬂn (5) ll zk(g.,.])" ‘Z( )(—1)"(5"‘j—”)"

J=0 vs0

2(6+ )"E( +1 )('-1)"(8+j—v)"".
v

J=0 va0
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Comparing the first term with (19) and employing the Pascal triangle identity on the second

k n 1)V e il
1)1,}.30(5”).‘.‘.:0[( ) (v—-l)}( DU+ )-v),

term we get

(n
B < (o) +

(23)
Further,
§+ 'Y ~1)*(8+ - v)™!
<ﬂ-1>';§( J) 0_0( )( )'(8+ ]~ v)
S USY oY B PO L
" (n 1>‘ 0\ v
1 k L n v 1
e 2(5"'1) > (=D'(E+j~0)™". ' (24)
1“}-0 wl \ v
From (13)
n
A"w*‘)-Z(—n"(”)<s+n-—v>"~'-0, o (25)
um( v
since it is the nth difference of a polynomial of degree n — 1. The second term on the right hand
side of (24) is u{™" (8).
In addition,

v

] n v ; w1
m?“"’]) E( 1)(—1) (6+j—=v)

!}:(64-,;)2( ) (=D (E+j -y~ 1)~
v :

Ju0 vm()

=l ym(

T X6 i) 2( ) (=" (54 -0~ 1)~
v




;.-l

y=0

(")(-n”‘(su—v-n*‘

1 K[k} =t [
2 T(6-1+/)"3 (=115 =1+ ) = v)™!
- 1)! ru0 r | /=l o v

w1
1)! 5: ( ) 2(6»«:‘)'{: ( " ) (=118 +j =)™
v

r=0 s vu0

k& .
- _2 “s‘n-l)(a).
r«0 r

Thus, by (23), (25) and (26) we have shown that

r=0

(n
B E) w kuf?(8) + 0 (8) - > ( k ) mh(8),
r
or |

ral

d“*ﬂ-k v, (8) - Z(k)u?'""(s).
r

establishing the theorem.
Corollary 1. For1 < & < n, then

=t
kpi (8) = 3 ( ) w(8).
T

r=(

(26)

(27)

(28)

Proof. By the Corollary to Theorem 1, p. " (§) is independent of & for 0 < & < mand hence

(l)

-‘;‘ﬁ 0 for such values of k.
Corollary 2. If k = n+ 1, then

At 7 (6)

" i = (n¥ 1 uib(5),

where cp.1,4 I8 & constant (depending on n, but independent of 6).

€8

(29)




Proof. From the Corollary to Theorem 1 and Theorem 2, (n+ 1) u{™ (8) is independent of & and

» n+l

all terms in 33 ™1 (&) with the exception of r = n are independent of 5. This last
r _

term is (n+ 1)pé™V ().
Corollary 2 can be extended to k = n+2 and so forth, but the expressions obtained become more

complicated and do not appear to be particularly useful. However, we do make use of Corollary 2
in the next theorem, |

Theorem 3. For every n, u{™,(5) is a polynomial of degree n + 1 in § with leading coefficient
(-1)m |
Proof. We proceed by induction, using Corollary 2 to Theorem 2.

n
For nm 0, u{¥(&) = 5. Then g&%g(_a_)_ =21 = 2u{0(6) = c2,1 = 26.
Performing the indicated integration, we have

u$V(8) = 216~ 6% + d,

where d is an unspecified constant.

Assume that the conclusion holds for n = m. Then

d (m+1) 6
—uln—()' = Cme2 mel ™ (m+ 2)#5;::)1
dé
m+1
= Cri2met = (m+ 2)(agd™! + 3 a,;8™1), (30)
Jml

~where ag is +1 or — 1. Integrating, we get u{™5" (8) = —agé™2 + Py,1(8), where Py, (8) isa
polynomial of degree m + 1.

A table of u{¥){ &) appears in the Appendix forn =5,k =0,1,.,.,10 and selected values of
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3 Applications to Probability Theory

Let Uy, Ua, ..., Un be independent random variables uniformly distributed on (0, 1). Let
wl

Spe1 = f‘:t Us. The distribution of Sw is well-known and is given by the probability density
function

1 ¥l n+l
fs..x(ﬂ',.,—!}:(" )(-1>"(m—v)r.0<z<n+1. (31
um() v
(for example, see W. Feller [14].) Where
0, z-a<0
(3"—0)+'{ Toas (32)
z-a, z-0620,

Write
Spet = [Sp1] + 6,

where [ Sn.1] denotes the integer part of Sy, 1. Clearly 6 is a continuous random variable and
0 €& < 1;[Sw1] is a discrete random variable with carrier set {0,1,2,...,n}.
The conditional distribution of S,.; given that the fractional part of S, is § is given by
. n
P{Sw1 = z|z — ] '5}'fs..;(f+8)/zof$.u(j+8)' (33)
Jm
where j+ 8= z,7=0,1,...,m ie. )=[zx].
From (31),

yml) v

n+l 1
S5y (J+6) = ;I-I-E ( m ) (=1Yj+6-v)r

Butj+ 8 —v > 0 isequivalentto v < ;, thus we get

L[ me
fou(f+6) = =% ( " )(—1)“(;’+a—v)". (34)

=l v

which Is A, (8) /nl. Also,

S o (F+8) = 1= oM (6)
y=0




and thus (34) is a discrete probability distribution with carrier set {6,1+ §,...,n+ 6},
Let W15 be the random variable whose distribution is given by (34). We then have the fol-
lowing theorem.

Thecrem 4. The moments of order k = 0,1,...,n of W, s coincide with the corresponding
moments of Sy, , that is,

E{Syi} = E{Wp s}, k=0,1,...m 0<8< 1, | (35)

Broof. E{Sy1} = Es(E{S;|6}) = Es{E{Wys}}.
However,

k 1 &, k 2 n+1 vl . n
E(Waist= — 207+ O Y (=1)*( +8-v)",
L =0 v
which is independent of §, by the Corollary to Theorem 1.

A brief table of W, 5 for n= § is given in the Appendix.

Remark. Itis easy to see that the marginal distribution of §, the fractional part of Sy 1, is uniform
on (0, 1). An elementary proof follows.

n +5*
P{5<6') = 2/’ fou, (2)de
j-O j

n g
=% [ o+ wdu

=0

& .
=/0 S Foun (5 + u)) dus

J=0

but gfsm(,;# u) = 1 forevery 0 < u < 1. Hence

P{SSS‘}=/:.du-6'.

Finally, we note that Wy, 5 is asymptotically normally distributed. This is stated in the following
theorem,
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Theorem 5. Asn -+ o0, for0 < § < 1, the distribution of

s ()

coverges weakly to the standar. normal distribution,
Further,

A,i(8) 6 _S(ivs 2 -
o - — .U‘"‘ (n+1)/2)
o w”me (1+0(n *)). (37)

Proof. Both (36) and (37) are immediate consequences of the representation of 42{2 a5 the con-
ditional distribution of the sum of n+ 1 independent uniform random variableson [0, 1) given the
fractional part of the sum and the central limit theorem,
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Appendix

This Appendix is devoted to some tables illustrative of some of the quantities introduced in the

body of the paper.
Table A1

Table of u{})(8),k=0,1,2,3;n=0,1,2,3 |
klo 1 2 | 3
0l ¢ §(8=1) §(6—1)(6-2)
1{1 %l 1+6-8 (L) 28%+362.-6~1+n
2|1 ml  eDOwd 42524 ~ (etdin
31 %_L gnn;g:sg—_z 1 | 2
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Toble A2

The Distribution of W15, n=5, é=.1,4,.5,9

W (=] =4 (ms f=9
§ 8x10-* 9x10=° 3x10-* .008

1+6 013 044 062 177
248 260 396 438 545
346 545 476 ' 438 260
4+6 AT 083 062 013

4+8 005 6§x10™* 3 x15-* 5x10-

Note the symmetry for § = .5 and that § = .9 and § = .1 are identical when the column for
§ = .9 is read going up and § = .1 is read going down (the entries 8 x 10~* and 5 x 10~? differ
as a consequence of rounding errors).




Table A3

LE6),n=5,k=0,1,...,10;6=0,.1,3,5,7,.9

=0 1 3 S N 9
k=0 1 1 1 1 1 1
1 3 3 3 3 3 3
2 9.5 9.5 9.5 9.5 9.5 9.5
3 315 315 31.5 '31.5 31.5 315
4| 108.7 108.7 108.7 108.7 108.7 108.7
5| 388.5 388.5 388.5 388.5 388.5 388.5
6 | 1432.50 | 1432.50 | 1432.53 | 1432.55 1432 .53 1432.50
7| 5431.50 | 5431.51 | 5432.01 | 5432.48 | 5432.31 5431.69
8| 2118.7 | 21117.60 | 21122.56 | 21129.77 | 21129.66 | 21122.07
9 | 84010.5 | 83989.19 | 84020.48 | 84096.88 | 84116.67. | 84049.80
10 [ 341270.5 341121.81 | 341763 .40 | 342089.16 | 341628.77

341018 48
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The Analysis of Multivariate Qualitative Data
Using an Ordered Categorial Approach

H. B. Tingey E. A. Morgenthein S. M. Free
University of Delaware Bristol-Meyers
ABSTRACT

When the experimental units being classified are sub-sampling units in the study, an
ordered categorical procedure cannot be applied directly, Further, the count data ob-
tained which is routinely analyzed by univariate statistical methods, ignores the depen-
dence among the responses. A modification of the method developed +y Nair (1988, 1987)
is used to derive the scores and indices, which are analyzed by rionparametric AOV. An
example from teratogenicity studies is used to illustrate the technique,

Introduction

This problem arises from the consideration of studies where a reproduction safety test
must be performed prior to the use of drug, chemical or food additive, The standard pro-
tocol in such studies requires that pregnant female subjects (usually rodents) are randomly
assigned to one of four treatment groups, The appropriate dosage is administered shortly
after the beginning of gestation. When the animals are near term, they are sacrificed
and the number of potential offspring are counted. Other data collected are the number
of implantation, early and late fetal deaths, number of live offspring and the number of
fetuses according to various degrees of increasing severity of malformation. Also data on
continuous variables such as fetal weight are collected. It is unclear from the literature
which statistical methods are appropriate for the analysis of this type of data.

For continuous measurements one may quickly turn to the analysis of variance. For
count data describing the number of fetuses with or without some qualitative outcome,
other methods have evolved. A per-fetus analysis using total of early death and total
number of implantation in a Fisher exact-test or a chi- squared test of independence may
be performed, but this appears to inflate samples sizes and ignores the dependence of
observations within litters. A review of per-fetus analysis is given by Haseman and Hogan
(1973) who conclude the per letter analysis is more appropriate.

All but one of the proposed methods for per-litter analysis consider a single outcome.
The need to include within and among-litter variation negates the use of simple binomial
or Poisson models for count data. In the methods which consider several single responses,
8 problem of family error rate arises. Since the tests arc not independent, the nominal
family error ratc cannot be exactly determined. The multivariate method developed by
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Ryttman (1976) relies on the assumption of norma.ity which is violated in the case of
fetal deaths. This lack of success, however, does not preclude a multivariate approach. In
situations where ranking the categories from mild to severe is possible, ordered categorical
models 1aay be applied and the family error problem may be eliminated.

In this paper we obtain a scoring system for various outcomes which produces a severity
index for each litter. This index is sensitive to location shifts. The modeling which follows
will be based on this index.

The study design prohibits the straight-forward application of ordered categorical pro-
cedures because the items (fetuses) are not independent, Thus a scoring procedure allows
consideration of the effect of letter size on severity of the response, as a whole, in the litter.
Here the sampling unit is the fetus or individual, Three observations should be made; i)
results arve different per litter than for per fetus, ii) per litter evaluates the proportion of
fetuses affected rather than the numbers of affected litters, and iii) observed treatment -
control differences iy less significant than per-fetus indicates (via simulation),

Univariate Analysis,

The simple analysis is based on litter as the experimental unit. This analysis is carried
out using binomial and poisson models. The binomial assumption states that conditional
on litter size the number affected is binomial, The analysis is based on transformed data,
usually the arc-sine of the observed proportion. The poisson model does not account for
litter size as it assumes the mean number affected is the same for all dose groups. The
analysis again used a transformation, usually the square root of the ohserved number.
Neither fits the data very well. This may be due to extra hinomial or extra poisson
variability, as the case may be,

More sophisticated models are reviewed by Haseman and Kupper (1979) include: weightec
least squares based on proportion and unequal sample sizes. This approach due to Cochran
(1943) requires sample sizes which are too large for this application. Others include, the
normal-binomial (Luning et. al, 1866), beta-binomial (Williams 1075), negative binomial
(McCuughran and Arnold 1976), correlated - binomial Altham (1978), jackknife Gladen
(1979). Several nonparametric procedures have been tried, namely the Mann-Whitney U,
the Kruskal-Wallis and the Jouckheere/ Terspstra. Some attempts at multivarinte analy-
sis have been tried by Ryttman (1978), log-linear models by Haberman and others (1074)
and generalized linear models by McCullagh (1980). All of the latter techniques have
distributional assumptions.

Since some of the ordered categorical procedures develop or accept scores for the cat-
egories, this approach was pursued. Scores induce relative spacing among the categories.
Thus, & mean score may be obtained for each litter, This implies analysis by litter as a
sampling unit, We note that CATMOD in SAS allows for scoring, but the scores mst he
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user specified.

Ipsen (1958) suggested a scoring for Bioassay. Instead of estimating an LDgg or E Dy
based on number of survivors after x days, he ordered the data into categories with the
continuum represented by time (days). The scores proposed are such that the variance of
the linear regression of mean scores on the log dose is maximized with respect to the total
variance. An adjustment is made if the scores do not reflect the ordering of the categories.

Bradley et.al, (1962) scores by maximizing the treatment sum of squares after scaling
relative to the error sutn of squares. This is an iterative procedure which does not require
the assumption of linearity.

Using no distributional assumption, Nair (1986, 1987) suggested some techniques for
analyzing orcered categorical data in the field of quality control. He showed the Taguchi
statistic for 2 x 2 tables, can be orthogonally decomposed into K - 1 components where
IX s the number of categories. In the two sample case he showed the first components
is equivalent to Wilcoxon's rank test on grouped data. Thus, this components would be
sensitive to shifts in the multinomial inodel. Further, the second components corresponds
to Mood’s rank test for grouped data, thus is sensitive to scale changes in the 2 x X model.

In the non equiprobable case the correspondence does not apply though the interpre-
tation still holds. This result has been verified using a comparison density approach for
the two sample problem by Eubank, LaRiccia and Rosenstein (1987).

The decomposition of Taguchi’s accumulation chi-squared (1066, 1974) requires the
solution of an eigenvector problem. Nair (1986, 1987) provides the method for deriving two
sats of scores, These yield statistics that are approximately equal to those obtained from
the orthogonal decomposition, but do not require a rigorous solution. The approximate
and exact statistics have comparable power,

When applied to 2 x I tables, the first set of Nair's scores is sensitive to shifts in location
of the underlying random variable. It is reasonable to suggest, when applied to litters,
these scores yield a continnous index useful for detecting shift. In teratogenicity studies
the loeation shifts of interest would be those that indicate o significant dose-respouse,

Najt's Method

As alveady mentioned, the first and second components of the orthogonal decomposition
correspond to the Wilcoxon and Mood rank test, respectively.

Wilcoxon vests,

Hy: G)= F(r)
H :Ga)=Flr — §)




where F, G are two distribution functions.
Mood tests,

Ho: G(z) = F(z)
H,:G(z) = F(z/9)

where 8 is a constant.

For more than two treatment groups the first component corresponds to the Kruskal
- Wailis statistic for grouped data, and the second to the generalized Mood statistic. 1n
the general case (except equiprobable) case the equalities are no longer exact, but the first
two com.ponents have good power for detecting location and scale shifts respectively. The
focus of this work is on location shifts. .

Notation

O%served frequency for the (i, k)™ cell = Vi

o, ™
noi

Column total, = Cx = Yix + Yaor

Row total, = R;= R; = Z‘,i‘;l Y

Cumulative row frequencies Z; = ):J=1 Yy

Cumulative column totals. D, = Z’;,_.l ¢;

The row proportions = r; = R;/N

The column proportions = ¢, = C,/N

Cumulative column proportion up to and 1ncludmg column k dy = D\/N.

Vector conventions used.

hold lower case letter = a vector

bold upper case letter = a matrix

transpose = !

a vector raised to a power implies each element is raised to a power
(this is non standard)

Multinomial model. 2 x I case

Two random samples of size R; i = 1,2 are drawn from two
multinomial populations.
For each population, the probabilities of the K outcomes are given by
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Pyk =1,2 ... K. |
The cumulative probabilities for population i are given by
T = Thoy Py
If the K categories are assumed to be ordered the hypothesis is

Ho: mep =m0 k=12, .. K
Hy: (rip — 1) < Oforall K
(strict inequality for at least one k).

Alternative statistics to Pearson’s x? .

K 3
Taguchi's statistic Tg = ) [de(1 = de)]" {D_ Ri(Zw/Ri — di)}
k=1 i=l

If x3p is the Pearson x? statistic from a 2 x 2 table where column 1 contains the
cumulative frequencies of categories 1 through k and column 2 contains the cumulative
frequencies of categories (k+1) through K. Then,

K-1
Te=3) X%
k=1
where Ty is a “ces type statistic”,

Tx assigns weight wy, = [di(1 — di)]™* to the k* term in the sum which is equal for each
k under Ho.

K-1 2
Nair's Statistic T = 3 we{d_ Ri(zix/Ri—di)?
k=1 f=1

The statistics in the class are obtained by the choice of the set {wi} where wy > 0
for A =1, 2, ... K =1, The decomposition is catried out conditionally on the marginal
proportions. For y;, wx k =1, 2, ... ' — 1, W is a diagonal matrix. Using the d we form
the (' — 1) x I matrix A by;

1—dy 1-dy —dy..  —d

l=deoy 1 =diogn 1 ~dioy =diy
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Thus T is given by

T = y{A‘I’VAy1/NT1Tg.

To express T es a sum of squares in y; we need to express
A'WA

as a product of a diagonal matrix, Q and its transpose. Let A be diagonal of order It
formed by the colum proportions {cx} and let I' be the diagonal matrix of order (k - 1)
containing the eigenvalues of A‘W AA then the decomposition yields

AWA = Qe

where Q contained the eigenvectors of A'W AA such that

Q=[1Q]

satisfles

QA =1

substituting QT'Q" into T above with

u = Q(Nrm) 4
yields

N=1

T =Y, nU}

J=1

where the 7;'s are elements of the vector of eigenvalues, 7, and U;'s are elements of u.
Under Hy the distribution of y; conditional ou row and column proportions is multiple
hypergeometric with
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E(Yk) = Nrok
Cov(Yik, Yi) = N(1 = 1/N)rr(l - o) k=1
= =N - 1/N)mrycia) k#1
or
E(y1) = NmrAl
cov(yr = N(1 ~1/N)"'mrA[(T = 1) + 1*A)

1is a K x 1 vector of ones. It follows that

0
(1 -~ 1/N)-T

E(u) = Nr(Q'AL)/Nriry
cov(u) = (1-—=1/N)1Q'AI -~ 1 1'A]Q

implies the U;'s are uncorrelated with zero means,

Under Hj it can be shown that the limiting distribution of y; converges to the multi-
variate normal distribution as N goes to infinity, Thus

K=} 24 K1 2
T=Y nUi% 3 mix’

J=1 J=1

a weighted sum of independent x* random variables, each with 1 df

The approximate solution by Nair proposed two sets of statistics which have properties
the same as those obtained for the equiprobable case (i.e. ¢, = 1/k). That is the first
component of Tg or Ug,; is equivalent to the Wilcoxon test on the 2 x I table and Ug ,,
the second component, ic equivalent to Mood’s

K
M= [k - (K + 1)/2*Y;

k=1

They do not require the solution of the eigenvalue problem as orthogonal decomposi-
tion is not necessary. The first component, all observations in the category are assigned a
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score proportional to the midpoint of the category. The second component the scores are
quadratic in the midrank. Additionally, each set of scores is adjusted to satisfy orthogo-
nality.

To calculate the scores, let ¢ be of length K with elements being the column proportions.
Form

5 0. 0
15 0. O
B=|:
11 S 0. 0
11 1 1 5

Let 7 = Bcand ™ = 7 — .5(1). Note the r’s are Bross's ridits. The first set of scores is
obtained from

1 =71/

where 7 *? is a vector of squares of elements of * ., The second set of scores is obtained in
two steps. First let

e = 11 - ('1%9)1) - L,
Then
s = e/cte’.
The approximate statistics for the 2 x I’ table are

V¥ = LI/R, + LY/R,

where
Li = 1'y 1,2
and
Val = SR + S}/,
where
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~ which are comparable in magnitude and consequently in power to U; and U; respectively.
We now apply the method:

Conduct of the study and data:

PROTOCOL

. Sprague-Dawley rat study

. Herbicide: nitrofen (2, 4-dichloro-4 nitrodipheynl ether)

. Test compound administered during organogenesis

. Sacrifice prior to parturition and cesarean-sectioned

. Record litter u.7 fetal data

. Administration of compound follows daily dose regimen

7. Treatment groups; control and three dose groups

8. Inseminated females randoinly assigned to 4 groups of 24 rats each

9. Dose levels. 6.25, 12.5, 25 mg/kg/day body weight on days 6-15 of gestation.
Controls: gavage solution w/o test compound

DO DN

Live fetuses are weighed, sexed and examined for external malformations. They are
then sacrificed in order to perform the skoletal and visceral examination. Recorded are the
number of corpors luta on each ovary, number of implantations, number of fetuses, and
the number of resportions in each utrine horn., Table I displays the data for each rodent
and close level, -

The following definitions are employed to categorize the fetuses: Dead - Early or late
resurption of dead at c-section, malforined-gross visceral or skeletal variation, growth re-
tarded - body weiglit more than two standard deviation from the mean for the given sex
or by & range test. Normal - absence of any of the previous outcomes. Table's II and
IIT summarize the results by number and percent for each dose by category. It should be
noted that the differing number of letters is due to nonpregnant females, not toxicity.

The final columin of Table I is the calculated severity index, This index is calculated by
multiplying the score for the category by the number of fetuses in the category, summing
and dividing by the number of implantations, i.e.,

SI=n'c/n'l.

Details of the calculations of a severity index are given in the following example.

Consider the following sample daia:
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Table I
Nitrofen Data - Strague-Dawley Rats
Number of Growth Severity
Id I!mplantations Normal Retared Malformed Dead Index
Dose Group = Control (0.0 mg/kg/day b.w.)

19 1 1 0 0 0 0.00000
8 4 3 0 0 1 0.68423
11 § 4 1 0 0 0.25139
7 8 7 0 0 1 0.34212
1 12 9 0 3 0 0.49148
16 14 14 0 0 0 0.00000
24 14 11 0 3 0 0.42124
] 19 15 0 0 0 0.060000
9 15 18 0 1 1 0.31352
20 18 12 0 3 0 0.39316
22 15 12 1 2 0 0.34590
2 18 14 1 1 0 0.20142
4 16 16 0 0 0 0.00000
10 16 16 0 0 0 0.00000
12 16 14 2 0 0 0.15712
17 18 16 0 0 0 0.00000
23 18 15 0 0 1 0.12286
3 17 11 0 6 0 0.69382
5 17 10 0 6 1 0.85481
13 17 13 0 3 1 0.50790
15 17 13 0 2 2 0.55326
21 18 13 0 4. 1 0.58890
“Dose Group = Low (6.25 mg/kg/day b.w.)
32 1 0 0 ) 1 2.73692
28 12 10 0 2 0 0.32763
43 12 9 0 3 0 0.49143
26 14 10 0 4 0 0.56166
31 14 14 0 0 0 0.00000
39 14 11 0 3 0 0.42124
41 14 9 0 5 0 0.70207
47 14 10 0 4 0 0.56166
48 14 14 0 0 0 0.00000
33 18 10 0 5 0 0.65527
38 18 10 0 5 0 0.65527
40 18 13 0 1 1 0.31352
45 18 12 0 3 0 0.39316
25 16 11 0 5 0 0.61432
27 18 12 0 4 0 0.49145
34 16 10 0 6 0 0.73718
35 16 12 0 4 0 0.49143%
.37 16 9 0 7 0 0.86004
44 16 12 0 4 0 0.49145
46 16 11 0 5 0 0.61432
36 17 7 0 8 2 1.24708




Table I (Cont’d.)
Nitrofen Data - Strague-Dawley Rats
Number of Growth Severity
Id Implantations Normal Retared Malformed Dead Index
“Dose Group = Control (0.0 mg/kg/day b.w.)

o4 2 0 0 0 2 2.73692
70 3 1 0 2 0 1,31054
59 4 2 0 2 0 0.98290
64 8 5 0 3 0 0.73718
53 11 4 1 5 1 1.25663
55 13 7 0 ) 1 0.96661
58 14 7 0 6 1 1,03798
60 14 7 0 ] 2 1.09306
65 14 8 0 5 1 0.89757
68 14 10 0 3 1 0.61674
62 15 6 0 6 3 1.33371
67 15 13 0 1 1 0.31352
71 15 8 0 4 3 1.07160
49 18 6 0 10 0 1.22863
69 16 11 0 4 1 0.66251
56 18 15 0 2 1 0.37047
57 18 13 0 5 0 0.54606
72 18 7 0 11 0 1.20133
“Dose Group = High (25.0 mg/kg/day b.w.) .
51 0 0 1 1 2.35136
80 7 3 0 3 1 1.23348
86 8 8 1 1 0 0.40284
73 10 1 0 9 0 1.76923
77 14 3 0 11 0 1.54456
78 14 3 0 11 0 1.54456
79 14 2 0 12 0 1.68498
83 14 9 0 5 0 0.70207
93 14 1 0 12 1 1.88047
76 15 0 0 15 0 1.96581
84 15 6 0 2] 0 1.17949
02 15 T 0 8 0 1.04843
T4 16 4 0 11 1 1.52255
87 16 ] 0 10 0 1.22863
94 16 8 0 8 0 0.98200
95 16 6 0 10 0 1.22863
96 16 4 0 10 2 1.537075
89 17 6 0 11 0 1.27199
90 17 0 0 11 6 2.23797
75 18 6 0 12 0 1.31054
81 18 6 0 12 0 1.31054
88 19 11 0 T 1 0.86829
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Table 11

Number of Implantations
Group ormal | Gr.Retarded | Malormed | Dead | Total
Control | 252 5 35 8 '300
Low 239 1 89 5 334
Mid 130 1 79 18 228
High 08 1 199 13 | 311
Table III
Percent of Implantations |
Group | Normal | Gr.Retarded | Maliormed Beg__a
Control | 84.0 1.7 11.7 2.7
Low 71.8 0.3 26.8 1.5
Mid 57.0 0.4 34.6 7.9
High 31.5 0.3 64.0 4.2
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Number of Implantations (Fetuses)
Normal Gr.Retarded Malformed Dead 'Totals

Control 282 5 35 8 300
Low Dose 239 1 89 5 334
Middle Dose 130 1 79 18 228
High Dose 08 1 199 13 311
Totals 719 8 402 44 1173

Calculate the column proportions:
c, .61205823 .00682012 .34271100 .03731066

Calculate Bross’s ridits (1958) by the formula 7, = (co+¢y+.. .+ c4-1)+.5c, wherecp =0
7 .30647912 .61636829 79113385 98124488

Now, let 7 = 7, ~ .5
i -10352088 .11636829 .20113385 ,48124468

Calculate the constant d = [y 72 + ca73? + Carg? + cyr?)/3
d = [61205823(—.19352088)" + .00682012(.11636829)° +
34271100( .20113385)7 +  .03751066(.48124468)3] /2
.24654207

'The vector of scores (Nair, 1086, 1987) is then obtained by l = 7}/d:
I, -0T849 0.4720 1,1809 1.9520

Shifting the scores so that the score for a normal implantation (fetus) is zero, the final
scores are!

It 0.0000 1.2569 1.0658 2.7369

Then, a litter with 11 implantations of which 4 are classified as normal, 1 as growth re-
tarded, 5 as malformed and 1 dead, would have & severity index of:

SI=[0.0000(4)+1.2569(1)+1.9658(5)+2.7369(1)])/11=1.2566

This can be interpreted in light of the above scores, ie., an index near zero would be
indicative of a litter with nearly all normal fetuses at cesarean-section and a score near
2.7369 would be indicative of a litter with nearly all fetuses dead at cesarean-section,

Designs fot the Analysis of the Severity Index

Five designs were evaluated which assume normality. The one-way classification, a
one-way classification using litter size as a covariate, a generalized randomized hlock using




litter size as a blocking variable, and a weighted anelysis using in one case litter size as a
weight and in another the square root of litter size. The results are summarized in Table
IV in terms of calculated F, associated P values and R?.

Table IV
f F P R?
One way analysis 3,81 22.97 <.0001 .46
Covariance 3,80 2599 < .0001 .53
Generalized RBD 3,65 2052 < .0001 .38

Weighted AOV (litter size) 3,81 15.62 < .0001 .37
Weight AOV (y/littersize) 3,81 33.11 < .0001 .58

As was expected the covariance and blocking provided an improvement over the one-
way classification as measured by R3, However, the magnitude of the improvement does
not seem to warrent the chance of violating the more restrictive assumptions placed on the
experiment by those designs, A better alternative, in the parametric case, may be using
the square root of litter size as a weight which provides nearly the same value of R? as
does the blocking design. However, we would prefer the one-way analysis for its simplicity
and robustness in application,

The normality assumption on the severity index is quite suspect in many situations.
As an alternative, the nowparametric Kruskal-Wallis procedure was carried out. In view of
the overwhelming significance of the parametric procedures, this result was not surprising

x? = 47.78;af = 3 p < .0001, Figure 1 compares the linearity of the mean severity index
and the median severity index.

Figure 1

/

0.00 6.25 12.50 25.00
DOSE (mg/kg/day)
STAT  © MEAN o MEDIAN

SEVERITY INDEX
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Statistical Procedure

The consideration of litter size is not necessary for analysis of the SI's. It is important
to note than the SI's are probably not normally distributed, particularly in the control
group and at the higher dose levels, The following is suggested for toxicity-teratogenicity
studies,

1. If the SI's are reasonably normal, calculate the AOV F-statistic for a one way layout.
Use this statistic to test for differences in location.

(3]

If F is significant, follow with linear constrasts to test for increasing trend.

3. If significant use Dunnett's procedure to compare control mean with each of the
treatment means to establish no-effect leve,

4, In the presence of non normality use a similar sequence of nonparametric test. e.g.
K - W, Jonckheere/Terpstra, and Dunn's procedure,

SAS code is available which reads litter data, calculates scores, computes SI's and cal-
culated the statistics, The results above have been "tested” by simulation analysis of
additional nitrofen studies and two other biological examples. Also, the method detects
different dose patterns with equal ability,. The K - W test showed consistently higher power
than the F-statistic in the simulation studies,
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Abstract

The Anderson-Darling goodness-of-fit procedure emphasizes agreement
between the data and the hypothesized distribution in the extremes or talls,
An improved table of the quantiles of the Anderson-Darling statistic, useful
for small sample sizes, was constructed using the Cray-2 supercomputer. The
power of the Anderson-Darling test is compared to the Kolmogorov and the
Cramér-von Mises tests when the null hypothesis Is the normal distribution
and the alternative distribuiions are the Cauchy, the double exponential, and
the extreme value distributions,
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1. INTRODUCTION

Consider a random sample X, X;, ..., X;; from a population with a
continuous distribution function. One met.‘hod of testing the hypothesis that
the n observations come from a population with a specified distribution
function F(x) is by a chi-square test. This test requires a subjective
partitioning of the real line R and a comparision of the empirical histogram
with the hypothetical histogram. A more objective method, is to compare the
empirical distribution function F_(x) with the hypothetical distribution

function F(x). The empirical distribution function based on n observations is
defined as F,(x) --};- if exactly k observations are less than or equal to

x, for k =0, 1, ..., n.

To compare the empirical and hypothetical distribution functions a
measure of their difference is required. Addressing this, Anderson and Darling
(1952} considered the following metries in function space:

W2 mn [ [Fy(x) = F(x)}? Y[F(x)] dF(x) (1.1)

-0

and
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Ky= sup ValF,(x) - F(x)l\/;l_'[?‘_(;ﬁ . (1.2)
-00 < X < %

Samples producing large values of W2 (or K,) lead to rejection of the null
hypothesis that the population distribution function is F(x). One of the
contributions of Anderson and Darling was the incorporation of a non-negative
weight function ¥ in (1.1) and (1.2). By a suitable cholce for ¥, specific ranges
of values of the random variable X, corresponding to different regions of the
distribution F(x), may be emphasized. For {F(x)] & 1, W} becomes tha
Cramér-von Mises statistic [Cramér, 1928 and von Mises, 1931] and K,

becomes the I<olmogorov statistic [Kolmogorov, 1933].

The tails of the distribution function will be accentuated m the

investigation detailed in this paper; Anderson and Darling suggest using

1
F(x)[1 = F(x)]

YF(x)] =

With this choice for the weighting function, metric (1.1) becomes the basis for

the Anderson-Darling statistic.

In Section 2, the Anderson-Darling test statistic is developed: in
Section 3, the most accurate tabulation to date of the test statistic is provided.

In Section 4, the description and the results of a power study are given in

which the Anderson-Darling, the Cramér-von Mises, and the Kolmogorov

statistics are compared.
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2. THE ANDERSON-DARLING STATISTIC

For = fixed value of the random variable X, say X == x, the empirical
distribution function F,(x) is a statistic, since it is a function of the sample
values Xy, Xy ..,y X;. The distribution of this statistic is established as a lemma.

Lemma (2.1): If F,(x) is the empirical distribution

function corresponding to a random sample X, Xy, ..., X,

of size n from a distribution H(*), then for a fixed x, nF,(x)
is distributed binomial (H(x),n).

Proof:
P(nF,(x) = k) = P(exactly k values x; < x), for k = 0, 1, ..., n.,

Let Z == (Lo, y (Xj), where the indicator function I is defined as
1, if =00 < Xi S X
I(-oo, x| (X;) ==
0, otherwise .

Then £Z; counts the number of sample values x; < x.
Here each Z;~Bernoulli(H(x)), so LZ;~binomial (H(x),n).
Therefore,

P(nF(x) = k) = P(exactly k values x;, < x)

- [ﬁ]H(x)k [1 - H(x)]n-k "




From Lemma 2.1,

B{Fy(x)] = 3 B [aFy(x)] = He)

and

Var[Fy(x)] = ;12- Var [nFn(x)] = 2 H(x) [1 = H(x)] (2.1)

To assist in the determination of a suitable weighting function ¥{*),
that is, a function that will weight more heavily values in the tails of the

distribution F(x) at the expense of values closer to the medlan, consider the
2

expectation of the squared discrepancy E [Fn(x) - F(x)] . It 1s important to

keep in mind that the value X is fixed, so F(x) is a constant, and the

expectation is with respect to the randoin variable F(x) whose distribution was

established in Lemma 2.1. Then

nE {Fn(x) - F(x)]2 =1 E[F,(x) - H(x) + H{x) — F(x)]'z

=10k {Fn(x) - H(x)}— {F'(x) - H(x)}

which. after algebraic manipulation (Appendix A) yields the variance and bias®

2

= ]

-1-11- [H(x){l - H(x)}}+ {F(x) - H(x)}
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Under the null hypothesis Hy: H(x) = F(x) Y%, (2.2) becomes
nE [Fn(x) - F(x)]2 =F(x)t = F(x)] . (2.3)
1

(1 =F()]

Weighting by the reciprocal of (2.3) takes into consideration the variance of

Anderson-Darling chose as a weighting function, Y[F(x)] = e

the statistic F,(x) and also maintains the objective of accentuating values in

the tails of F(x).

With this choice of weighting function and without loss of generality
assuming x; < xp < oo L Xpy let F(x) m u, dF(x) = du, and F(x;) = u. Then
the Anderson-Darling test statistic (2.4) can be rewritten as expression (2.5) by

expansion and integration (Appendix B).

% [Fa(x) = F(x))°

Wa=n ] F) T =Fpo & ) (24)
W2m—p—Lg [(Qj—-l)ln 4, + (2(n—j)+1) ln(l—uj)]. (2.5)
0o
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3. DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC

The asymptotic distribution of W,f was derived by Anderson and
Darling [1952). Lewis [1961) undertook the tabulation of F(z; n) = P(W? < 2z)
for n=1,2,.,8 and for incremental values of z over the Interval
[0.025, 8.000]. Lewis' table entries were computed using s Monte Carlo
procedure to generate an empirical approximation F(z;n) to the distribution
function F(zjn) based on m samples of size n. At that time, computational

restrictions essentially limited the accuracy of the table entries to within

0.00326 of the true value,

Following an analogous procedure based on expression (2.3) and the
observation that the U; are distributed U[0,1] [Feller, 1966|, the table appearing
in Lewis' paper was recalculated using a Cray-2 supercomputer. A
Kolmogorov-type bound [Conover, 1080] was used to construct a 95%

confidence band for .he distribution function F(z;n).

In general, the width of a (1 — a)100% confidence band is equal to

twice the value of the (1 — @)100% quantile of the Kolmogorov statistic

Kp = . sup ‘\/-nT|Fm(x)—-F(x)|. where m is the number of sample
—-00 < X < 0
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values used in the construction of Fm(x),' With n fixed, the 95% confidence
band can be made arbitrarily small by a suitable cholce for m, the number of
Monte Carlo samples. The commonly tabled [Miller, 1956] asymptotic
approximation for the 05" quantile Is 1.358/\/— . However, Harter [1980]

suggests using

1
1.3568 >

1
r 2
[m+ 3.5]

for an improved approximation,

,  where r = (m + 4)

Using approximation (3.1) to construct a 95% confidence band with
the width not exceeding 0.001, the value for m must be at least 7,375,881, In
this simulation, m was chosen to be 7.4 million. Table 1 lists the
reconstruction of Lewis' table, now accurate within 0.0005. Again, z ranges
from 0.025 to 8.000 and for n = 1, 2, ..., 10. The column labeled "oc" contains

the asymptotic values, rounded to four decimal places.
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4. POWER STUDY

The power of the Anderson-Darling ‘test was compared with two other
goodness-of-fit procedures based on the empirical distribution function: the
KKolmogorov and the Cramér-von Mises tests, The Kolmogorov statistic

introduced in Section 1 as metric (1.2) with weighting function ¥ [F(x) = 1

becomes

Ky= sup VanlF,x)=Fx). (4.1)

-0 < X < &

For an ordered sample x) <x; £ *** £<x,; and F(x;) =u;, (4.1) may be

evaluated using D = max( D*, D~ ), where

Dt = max|— — ui] and
v n
A

D~ = max ui—iul].
i\ n

The Cramér-von Mises statistic, defined as

W2 w 7 [Fa(x) = F(x)]* dF(x)

-0

can be reduced to (4.2) for ease of computation (Appendix C);
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2
2 . 21 —1 1
W2 8|y = = — 4.2
n i-l[u‘ 2n ] + 12n (42)

In the power study, two cases were considered. Case 1 corresponds to

the situation in which the parameters of the hypothesized distribution are
completely specified. Case 2 corresponds to the situation in which the

parameters are not specified and must he estimated from the sample data.

For both csse 1 and 2, the null hypothesis Is
H,: A random sample X;, Xy, ..y Xy comes from a normal population
> H.: H(x) = F(x), where F(x) ~ N(y,%) .
As alternative hypotheses, the Cauchy, double exponentlal,l and extreme value
distributloﬁs were chosen, each with location parameter the same as the null

hypothesis. This provided a heavy-talled, light-talled, and skewed distribution,

respectively, against which the power of the three goodness-of-fit tests are

N

compared.

The power functions do not exist in closed form; they are
approximated empirically vis a Monte Carlo simulation. To determine a point
on the power curve, a large number of samples of size n was generated from a
specific distribution serving as the slternative hypothesis, The number of
times the null hypothesis was rejected at a specific level of significance was

recorded. The ratio of the number of rejections, Y, to the total number of
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samples generated, N, provides an estimate, fa-Y/N, of the probability of
rejecting the null hypothesis when it should be rejected (power). The value P
determines a point on the power curve corresponding to a specific sample size

n, a specific significance level a, and a specific alternative hypothesis.

To determine the number of samples of size n required for a
sufficiently accurate estimate of fa. a nonparametric technique was employed.
Since the counter Y is distributed binomial( +; p,N) where the parameter p is
the true but unknown power, and since an approximate confidence interval for

p can be constructed [Conover, 1980] using

. 1 {

Y Y Y. Y Y. Y. ..&
-— -(1 ~~—}/N —— 1 ———}/N

. zl__%{‘N( ol }'<p< N+z1__%{"N( <)/ }'

samples of size n continued to be generated from the alternative distribution

l—a > P

L (43)

until the confidence interval for p given in (4.3) was sufficlently small,

The confidence interval coefficient 1 — o was chosen to be 0.975 and
the confidence interval width not to exceed 0.025. Then the confidence limits
(4.3) were successively evaluated until the interval width was satisfied.
Considering a "worst-case" scenarlo in which p = 1/2 and the variance of its
estimate p is greatest, equating Y/N = 1/2 in (4.3) suggests that samples of
magnitude 8037 might be required. A minimum -alue for N of 100 was

imposed to prevent premature termination of the procedure.
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4.1. Case 1: Distribution Parameters Specified.

The power study for case 1 specified the parameters of tl;1e
hypothesized distribution as N(0,1). The results of the study are summarized
in Figures 1 — 12, For each of the three distributions serving as an alternative
hypothesis, samples of size n = 5, 10, 15, 20 were chosen for study and, as
previously mentioned, the location parameters of both the null and alternative
hypotheses coincided. The scale parameter for the alternative hypothesis were

values from 0.025 to 3.000 in inerements of 0.025.

The level of significance for the study was 0.05. The critical value for
each test was determined from tables in Conover [1980] for the Kolmogorov
test, Stephens and Maag [1968] for the Cramér-von Mises test, and T'able .1 in

Section 3 of this paper for the Anderson-Darling test.

The Anderson-Darling ‘best demonstrated overail superiority for the
sample sizes and hypotheses chosen for this study. This is perhaps to be
anticipated in view of the emphasis on agreement in the tails by the
Anderson-Darling procedure, but the magnitude of difference over the

olmogorov and Cramér-von Mises tests i< ivipressive.
Kolmogorov and Cramér-von Mises tests i pressiv.

The power curves corresponding to n == 10, 15, 20 are distinguished

by their characteristic of decreasing to a global minimum before becoming




L. 4

.
hd
-

monotone increasing. An explanation of this feature is suggested by
consideration of Figures 13 — 15 in which the distribution functions of the
N(0,1) and Cauchy (0,¢) are compared. There it is se.en (Figure 14) that
corresponding to ¢ == 0.50 the two distribution functions are similar; an
increase (decrease) in the scale parameter ¢ causes the tails of the distributions
to become more distinct. Values in a neighborhood of ¢ = 0.50 marked the

global minimum throughout the study.

4.2, Case 2: Distribution Parameters Estimated.

The Anderson-Darling, Kolmogorov, and Cramér-von Mises
goodness-of-fit tests were developéd for use in case 1 where -distribution
parameters are specified, and so precludes their use in the more likely situation
where parameters must be estimated. In practice, these procedures are
sometimes used anyway with the caveat that the tests are likely to be
conservative. Stephens [1974] provides adjustments to the test statistics that
¢enables the tests to be used to test the  assumption
H,: H(x) = F(x), where F(x) ~ N(1,6°) and the population parameters are

estimated from the data.

The results of the power study for case 2, are summarized in

Figures 16 — 27. As in case 1, the sample sizes are n = 5, 10, 15, and 20, and
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the level of significance is 0.05. Both location and scale parameters coincide;

the scale parameter are values from 0,025 to 3.000 in increments of 0,025,

The power plots are horizontal, demonstrating that power does not
change with scale parameter and provides empirical support for Stephens’
transformations, Power Increases with increasing sample size, as would be
expected. When both location and scale parameters agree, all three tests are

competitive for the sample sizes and alternative distributions chosen for this

study,
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APPENDIX A: EXPECTION OF SQUARED DISCREPANCY
BETWEEN AN EMPIRICAL DISTRIBUTION FUNCTION
AND A SPECIFIED DISTRIBUTION FUNCTION

To help find a suitable welghting function, Y[F(x)], lets look at

n L [Fn(x) - F(x)]’.

2 B[R0 - F(x)]’ -nE :Fn(x) ~ H(x) + H(x) ~ F(x)]“

[

wn B {Fn(x) - H(x)}- {F(x) - H(x)}
|

2

wn B {Fn(x) - H(x)}2 -2 {Fn(x) - H(x)]{F(x) - H(x)}

2
+ {F(x) - H(x)}

-nE [Fn(x) - H(x)]’ —2 {F(x) - H(x)]E [Fn(x) ~ H(x)]

2
+ [F(x) - H(x)}

. 2
= n E [Fn(x) - H(x)] + {F(x) - H(x)}




2
=nE [F',,(x) 2 _ 9 F (x)H(x) + H?(x)] + {F(x) - H(x)}

= 2 B [Fy()?] = 2 Hix) B [Fa)|+ 19(0) + {F(x) ~ H(x)}2

- [% H(x){1 — H(x)} + H(x) — 2 H¥(x) + H%(x)

2
-+ {F(x) - H(x)}

2
nE [Fn(x) - F(x)]a- n [% {H(x){l - H(x)}}+ {F(x) - H(x)} ]

Under the null hypothesls, 1.e., H,: H(x) = F(x),

B [Fafx) = F(x)|* = Folt = Fx)l.
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APPENDIX B: EXPANSION AND INTEGRATION OF
THE ANDERSON-DARLING STATISTIC

L ) —FP
Wi=2 | Fo)l =7

dF'(x)

"t Fa) =R st B Fa(x) ~ F)
- " [-foo Fex) [T = F(0)] kgx 1{; L= F] )

! [1 Zray ]

Let F(x) = u
dF(x) = du
F(x;) =y

( [k 2
-r14j'-J-——-l-—d11+‘\"_Ju_‘;‘H - du+f.L_)_d]

\0 u km] Uy

4
k2 2k
1 n—1 Yk [-?__“+u2]

n n
mn =4y =In(l-=u;)+
. 1 ( 1) kgl ﬁfk )

+ [——1 +u, ~In un]]
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n=1 [ 2k

-n{—ul—ln(l—u1)+k21 - ;ll[lnuk—ln(l—uk)]

n
+ [-9-::'-1-]2 [ln u, —In (.1 - un)]

+ :gi —%ln(l-—uk)] :

+ [1’-‘;“—"’-]1:1 (1 =)
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APPENDIX C: DERIVATION OF THE
CRAMER-VON MISES STATISTIC

For an ordered saraple x; Sx, < *'* <X, the empirical distribution
function is defined as r
0 x <X
Fad) = { & for e S¥ < X
1 Xp Sx
|

The Cramér-von Mises statistic may be written

2 | [Falk) =~ FoPdPG)

=0 { ] P ~Fof ar) + 5 ] IFus) = PO aR(e)

+ ofo [Fa(x) — F(x)]* dF(x)

Let F(x) mu
dF(x) = du
F(x;) == u;
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Then
n f [Falx) = FPAF(E)

\lm

=n ‘Z[O—u]gdu + 2 f -—u]gdu + }[l—u]Qdu

Uy

=11 12 i1
-n{-l-ula +n2 %u—-l-‘-u’+-1-u°]r + [%—-un+u3--%u,?]

ol uf + 2 Ky — ) = = k(udy, - uf)
nygu + 7 N (Ugsr — Ui E (ufyy = uf)
n kel n

] -l 1 1
+ 175 (- o) + [;-umz-;us]

—n{%-uf'w‘- . [E(-—(2k-1)uk)+(n—1) ]
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Completing the square,

r Y12 2
n ok ~ 1 a2 |2k—1
k)_Dl Luk A 2o ) T El[ 2n ]
o [ (k1P o 1
- /4

o [ (=i, a2 [ (mes-n
2 uk + 3 4n2[ 3 ]

k=1 L ( 2n ]




Nonpare, a Consultation System for Analysis of Data

J.C. Dumer 1II
T.P. Hanratty
M.S. Taylor

US Army Ballistic Research Labo: atory
ATTN: SLCBR-SE-P
Aberdeen Proving Ground, MD 21005-5066

Abstract. Nonpare, a consultation system for analysis of data using nonparametric
statistical procedures, is under active development. It Is intended to sewe as an
intelligent interface that will act as a guide, an instructor, and ar. interpreter to a body of

statistical software. Nonpare exists as a prototype, with a limited release planned in 1989
for field testing.
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1. Introduction

Statistical software packages, to large extent, accept any properly configured
data set and proceed to process it. Few if any checks are made to ensure the adequacy
of the data and the suitability of the analysis, and little is done to provide an
explanation or interpretation of the results. This requires a great deal from the user.
Declining computation costs, together with increased availability of computers and
proliferation of statistical software, has further enhanced the opportunity for faulty
data analysis. Application of expert system techniques from artificial intelligence to
produce more cognizant software is one approach to reversing this unfortunate trend.

In 1985, a workshop sponsored by AT&T Bell Laboratories brought together
many of the active investigators in artificial intelligence and statistics and was the
genesis of a book by the same title edited by Gale [1). This reference is in essence the
proceedings of the workshop; but the papers given there, some with extensive
bibliographies, provide the most complete centrally-located account of research in this
topic to date.

This report details an effort underway at the US Army Ballistic Research
Laboratory (BRL) to develop a consultation system for analysis of data using
nonparametric statistical procedures. The system, called Nonpare, is intended to
serve as an intelligent interface that will act as a guide, an instructor, and an
interpreter to a body of statistical software, The system is currently a prototype, with
a first release planned for 1989 for field testing.

2. Nonpare

Nonparametric statistics is too large an area to hope to encompass at once,
especialiy if the entire field of mathematical statistics is partitioned into parametric
and nonparametric procedurcs. The common-sense approach to construction of
consultation systems suggests limiting the domain of application, but nonparametric
statistics has qualities that make it strongly appealing.

Nonparametric data analysis is characterized chiefly by the absernce of
restrictive distribution assumptions - notably freedom from dependence on the normal
(Gaussian) distribution. Many nonparametric statistical procedures are exact rather
than approximate for small data sets, and they are the only confirmatory procedures
which can be used to analyze data collected on a nominal or an ordinal scale of
measurement. For these and other compelling reasons advanced, for example, by
Conover, [2] Hollander and Wolfe, [3] and Lehmann, [4) nonparametric procedures
find use in a wide variety of disciplines.

2.1 The System Structure

Nonpare uses Genie, an expert system shell developed at the BRL, [§] to
provide a frame-based production system with forward and backward inferencing as
well as an explanation facility that allows the user to interrogate the system-—what
hypotheses are being entertained, what rules are being verified, what facts are in
evidence. Genie was chosen over commerciul expert system shells for the research
and development of Nonpare because of its accessibility for modification,
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Nonpare, shown schematically in figure 1, consists of three subsystems'in
addition to Genie.

Genie
inference engine
forward
knowledge reasontng explanation user
S — N
base < facility
backward
j reasoning
nonparametric }[z
data system
analysis dictionary

Figure 1. Nonpare system overview.

The system dictionary is a facility whose purpose is to provide on-line
explanation of statistical jargon that may appear during the interactive dialog between
Nonpare and the user. Expert domain knowledge, codified in English-like rules,
resides in the knowledge base. Once an appropriate procedure(s) has been identified,
the data are analyzed and the results explained by the nonparametric data analysis
component. Graphics is used tc summarize the data and enhance the explanation. In
total, the user is led within system limitations to an appropriate statistical procedure
through an interactive process in which the user is questioned and can in turn question
the consultation system. Nonpare is written ir Interlisp-D and currently runs on
Xerox 1100 Series Lisp machines.

3. An lilustrative Session

Following the dictum of American educator John Dewey (1859-1952) that
"We learn by doing," a detailed session with Nonpare follows, in which the main
system features are illustrated.

Example 3.1

Suppose that a ballistician nceds to assess the effectiveness of a newly
designed Kinetic energy penetrator against a specific armor plate. In particular, the
experimenter would like to establish whether the probability of perforation exceeds
80 a level already attained with existing technology. Fourteen rounds are fired, and
[plerforation and [n)onperforation recorded to obtain: n, p, p, p, 0 p, . P P. DL P P,
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p, p. Is the Pr{perforation} > .80 ?

(A diversion here. Searching for a statistical procedure with a set of data
already collected is precisely how not to proceed. The purpose for collecting the data
should first be established, and then the statistical tools available to support this
purpose determined. Then the collection and analysis of data can proceed in an
informed manner. Lamentably, the methodology-search scenario is enacted over and
over again; so this example is not too contrived.)

It should be apparent from the onset that the question regarding
Pr{perforation} > .80 can never be answered unequivocally yes or no, but only with
some degree of qualification.

Nonpare presently has nineteen distinct data analysis procedures at its
disposal; the number continues to increase. No assumptions have been made about
their frequency of use; one procedure has not been declared most likely to be
exercised, a second procedure next most likely, and so on, since the base of potential
users is so broad. For the user, this means that any procedure is a likely starting point,
as in this session, the dialog of which begins in figure 2. In the remainder of this
section, the conventions that boldface denotes system prompts and brackets contain
user input will be adopted. An occasional system response may be italicized but
should not be confusing within the context of its appearance.

(o you have a sample XL, ..., #n? y

Are you interested in whether the data conform to a specified
distribution? n

Are you interested in the probability of cceurrerce of 3 particular
category or event? vy

Enter the name of the category ot

gt =2 pnrfursr1on
Are the n trials producing the vah ,

yoAn independent?

P
D =
m .~

Figure 2, Beginning dialog with Nonpare.

The session begins with a question about the configuration of the data,

Do you have a sample X, .., X, ? The data, n, .., p, look like X,, ..., X; respond
[yles.

Are you interested in whether the data conform to a specified distribution ?
Nonpare is investigating a possible goodness-of-fit situation. A statistician,
anticipating an approach to this problem, might find a [y]es response is dppr()prldtt,
here. A nonstatistician, for whom this portion of the system is designed, and who is
interested in whether Pr{perforation} > .80, should respond [n]o, as indicated.

Are you interested in the probability of occurrence of a particular category or
event ? [y]es. The user is interested in the probability of occurrence of a perforation.
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Enter the name of the category of interest. [perforation]. Domain-dependent
terminology is keing introduced.

Are the n trials producing the values X,, ..., X independent ? Suppose the user is
unsure of the technical implications of the term “independent.' An acceptable
response is [What is independent] - as shown in figure 3.

Are the n trials producing the values X1, ..., ¥n indepsncdent? what 1s in
dependernt :

Inqependence relstes to freegom from external influence or control- here,
the reference 1s to messuremants (dats) heing Tree to sssums valuse
without regsrd %o other msssurements that may he mace.

Are the n trials producing the valuee X1, ..., Xn independent? y

goas gach trial have the same probability p of producing the perforation
Yy

Arg you interested in considering whether the prowability of occurrence

of the perforation aquals or is hounded by some gpecified wialue p*7 ,

Figure 3. A call to the system dictionary.

Independence relates to freedom from external influence or control - here, the reference
Is to measurements (data) being free to assume values without regard to other
measurements that may be made.

This illustrates a dilemma for the subject area specialist. It may be impossible to
rigorously define a term without reliance upon other terms that are equally obscure to
a user with only a modest statistical background, This is the case here, where
independence is bound to basic concepts of probability theory. Nonpare’s response
conveys the notion, but regrettably not the substance, of independence. More work is
needed here. For now, assume the experimenter has collected a set of independent
data,

Are the n trials producing the values X,, .., X, independent ? [y]es.

Does each trial have the same probabllity p of producing the perforation ? [y]es.
Notice that Nonpare is now using language the user provided, when it talks about
probability of perforation.

Are you interested Iin considering whether the probability of occurrence of the
perforation equals or is bounded by some specified value p* ? [y]es. The user is
interested in the inequality Pr{perforation} > .80. After a [y]es response, the system
suggests a pussible approach, shown in figure 4.
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The biromial test is am appropriate procedure. To exesute the
binomial test, use the menu to complete this statemant:

I am interestad in testing the null hypothesis that:lhe probability
ar accurravce of the parforarion

ﬂua $ some wvalug b
cdoes not oxcend p*
ig at l9ast p*

Figure 4. A call to the nonparametric data analysis subsystem.

The menu allows the user to select either a two-sided or one-sided test of hypothesis
and is a potential source of error. Beginning statistics students, not realizing that a
null (or empty) hypothesis is chosen to be rejected, might mistakenly choose is at least
p* at this juncture. Here again, some level of stetistical competence is required.
Selecting the hypothesis does not exceed p* from the menu using a mouse, the user
obtains for confirmation (figure 5) the statement:

I am interested in testing the null hypothesis that: The probability of occurrence of the
perforation does not exceed p*.

[ em interested in testirg the mull hvpothesis that:The probebility of
occcurrence af the pervgorstion does not excead p*

Specify the sample size n -> 14
Specify a value for p* -> .80

Specify the number of datum values assigned to the perforstion - L1

Figure 5. Hypothesis confirmation and input parameter declaration.

Specify the sarnle size n, [14]
Specify a value for p*. [.80]
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ize of the critical region for the statistical procedure, which

ify ... " commands determine the appropriate binomial distribut

is explained in figure 7, following the system-generated histogram shown in figure 6.

Specify the number of datum values assigned to the perforation. [11]
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This means that if you reject the hypothesis (The pmbébility of occurrence of the
perforation does not exceed .8) you do so with a .69 probability of being in error.

The critical level of this test, corresporaling tw the light gray region,
is .09

This mesng that if you reject the hypothesis ( The probsbi 1Tty of

occurrence af the pervaration doss not evcesa .82 you do so with x .59
probability of being in error,

Would you Vike to run the binomial procedure again? ry

Figure 7. Explanation and interpretation of results,

Since the investigation began with the assumption (null hypothesis) that the
Pr{perforation} < .80, the evidence collected-eleven perforations, three
nonperforations—is not sufficient to support abandonment of that assumption. A
probability of being in error of .69 is more than a reasonable person would be willing
to assume. And so, the response to the original question, Is the Pr{perforation} >
807 is a qualified no, the qualification being expressed through invocation of the
critical level,

Would you like to run the binomial procedure again ?

At this juncture, an experimenter might well be asking a number of "What if ..."
questions. "What if I had been able to afford three more firings?" or, "What if [ had
observed one more perforation?" and so cn. A response of [y]es here allows the user
to exercise the binomial procedure directly, without having to respond again to all the
preliminary questions. A [n]o response is given, but this is an excellent place to use
Nonpare’s tutorial capabilities to study the sensitivity of the binomial procedure to
modification of parameter values or slight changes in the data.

Are you interested in determining an interval in which the probability p of
occurrence of the perforation lies?

The foregoing analysis suggests that an assertion that the probability of perforation
lies in the interval (.80, 1] cannot be made. What interval might be expected to
capture this unknown parameter? A response of [yles causes this question to be
answered, first graphically, as in figure 8, and then verbally, as in figure 9.
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m

CONFIDENCE INTERVAL
with 95.0% Contidence Level

| p=.78
[ I ]
L ' J
.48 .94

" Figure 8. Display for a 95% confidence interval,

Figure 8 shows that the Pr{perforation}, whose estimate based on the
fourteen firings is p = .78, lies within the interval [48, .94] with a high level of
confidence. This interval is so broad one can see why the assertion that
Pr{perforation} > .80 is ill-advised. The formal interpretation of the confidence
interval is given as

The probability of occurrence of the perforation is contalned in the interval [.48,
.94] with an a priori probabmty 98,

Areg you interasted in determining an interval in which the probability p

nt oocurrence of the perfaration Jies? vy

The probability of occurrance of the perforstion 135 contained in the
interval [.43,.04] with an & meford probaid 1ty (95,

Yould you Tike & confidence lewel other tham (95 7 n

Figure 9. Explanation and interpretation of the confidence interval,

Would you like a confidence level other than .95 ? [no). The 95% confidence level
was prechosen. A [y]es response allows the user to control the confidence level. The
session is terminated with a [n]o response, shown in figure 9.

At the conclusion of the session the inference engine displays a fact solution
tree for all the intermediate decisions leading to the final conclusion. Buttoning with a
mouse any node of the fact tree produces the logic leading to that location. In figure
10, fact1? was buttoned, and the corresponding trace is displayed beneath the fact
tree. These are features of the inference engine rather than Nonpare, but they are

valuable as diagnostics to the developer and provide some measure of reassurance to
the user.
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4, Conclusions

Nonpare, a consultation system for analysis of data using nonparametric
statistical procedures, has been described; and most of its operational features have
been illustrated. The essence cf the system is the rule-based interface with
accompanying software for data analysis and the interpretation of the ensuing
computations, Nonpare is under active development, but its feasibility as an
operational system hay been estoblished. Enlargement of the rule-base and the
addition of more statistical procedures is clearly indicated before it can approach its
potential, Not surprisingly, tangentinl problems in basic research have been spawned
by this effort. A first release is planned for 1989 for field testing,
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Numerical Estimation of Gumbe! Distribution Parametars

Charles E. Hall, Jr.
Research Directorate
Research, Development, and Engineer ing Center
U.S. Army Missile Command
Redstone Arsenal, AL 3589§-5248

ABSTRACT. The parameters which maximize the log-likelinood function
of the Gumbel distribution were estimated by two different methods. A
derivative approach was used, which calculated the intersection of the
zeros of the implicit functions obtained from the derivatives of the

log-likelinood function, A direct maximization was also performed.

Both methods yielded positive results.




EXPERIMENTAL DESIGN AND OPTIMIZATION OF BLACK CHROME
SOLAR SELECTIVE COATINGS

I. J. Hall and R. B. Pettit
Sandis National Laboratories
Albugquerque, NM 87185

ABSTRACT, Some years ago Sandia Laboratnries was given the
task of investigating selective coatings for solar applications.
Early experimental results, which were based on one variable at
the time experiments, produced acceptable coatings in the
laboratory. However, when full scaled parts were coated by
commercial electroplators, the coatings quickly degraded when
heated in air. At this point a systematic approach using a
fractional factorial design was used to determine both the
effects and interactions between several variables, including the
bath composition(four variables), current density, plating time,
substrate, and bath temperature. Response surface for the
optical properties of the coatings were constructed for both the
as-plated and the thermally aged samples. These response
surfaces wera then used to specify ranges for the bath
compositions, and other plating parameters, that provided
coatings with optimum thermal stability. wWith proper control of
the plating variables, salective coatings were obtained that
should maintain high solar absorptance values during years of
operational at 300°C in air.

1, INTRODUCTION, Two variables are of interest to
selective coating investigators, namely, absorptance (a) and
emittance (¢). Good selective coatings have high a's and low
¢'s. In our investigations we concentrated on making a as large
as possible and settling for the corresponding ¢ if it was not
"too big". The independent variables that effected a and ¢
divided themselves into two groups (bath variables and plating
variables) in such a way that a split-plot experimental design
would have been appropriate. The bath variables would have been
assoclated with the whole plots and the plating variables with
the sub-plots. The bath variables were chromic acid, trivalent
chromium, addition agent and iron. and the plating variables were
plating time, current density, bath temperature, bath agitation
and substrate. For a specified combination of bath variables a
ertire set of experiments were possible for the plating variables
as in a split-plot design. Because of many constraints we did run
the experiment as a split-plot design. The dependent variable
readings ( a's ) were obtained by coatirg a substrate and then
measuring the absorptance with a Beckman Model DK_2A
spectroreflectometer. Readings were obtained for the substrate
both as-plated and as-aged. The as-aged readings were obtained
after the specimens were heated in a 450°C furnace for 40 hours
while the as-plated readings were taken before they were
subjected to any extreme environments. The aged readings were
the most important because we were concerned about the thermal
stability of the coatings, i.s. would coatings not degrade at
high temperature for extended time periods. The experimentation
was done in three phases that are briefly described below.
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2. Exy .. Based on previous experience, we
decided that the bath variables were most important and thus we
concentrated most of ocur efforts on investigating these
variables. Tha plating variables werc set at nominal values. We
used standard response surface methodology to guide us in the
experimentation. (See Box, Hunter, and Hunter, "Statistics for
Experimentera", Cnapter 15, 1978) The first phase consisted of
rurning a 1/2 replicate of a 2* factorial experiment on the four
bath variables. The experimentation was done in a rather limited
range of tha factor space. The results of this experiment were
used to determine a path of stoepest ascent (Phase two). Three
more expariments were done along this line of steepest ascent.
These experiments would normally indicate a region in the bath
variable space that would produce larger a values. In our case
however all the coatings turnad gray aftar a short time in the
furnace ~ a highly undesirable result. The most valuable
infornation from these three bath experiments was that a "clifg"
existed in the response surface. Because of time limitations we
did not repeat the experiments along the steepest ascent line.
Based on a combination of engineering judgement and factorial
design methodology, several more baths were mixed and the a's
measured on the coated substrates (Phase three). A total of
eighteen baths were mixed and the results from these baths waere
used to estimate a quadratic surface -~ i.e. a was written as a
function of a second degree polynomial in the four bath variables
and the variable coefficients were astimated using a backward
stepwise statistical package. The final ragre;sion equation had
11 terms including the constant term with an R* = 0.96. Several
graphs were drawn based on this equation that allowed us to map
out an acceptable ragion in the bath variable space. This space
was very near the "cliff" in the response surface. A limited
number of experiments also were done involving the plating
variables for a fixed bath. Based on these experiments we were
able to specify ranges for the plating variables as well.

Using response surface methodology we were
able to dstermine the variables and the range of variables that
producaed stable selactive coatings. The procedures developed in
the laboratory were subsequently implemented in a production
environment with excellent results. The close interaction
betwaen the statistician and the experimenter led to a
satisfactory solution with a rather limited number of
experiments.
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DETERMINATION OF DETECTION RANGE OF
MONOTONE AND CAMOUFLAGE PATTERNED FIVE-SOLDIER
CREW TENTS BY GROUND OBSERVERS

George Anitole and Ronald L, Johnson
U. S. Army Belvoir Research, Development
And Englneering Center
Fort Belvolr, Virginia 22060-5606

Christopher J. Neubert
U. S. Army Materiel Command
Alexandria, Virginia 22333-0001

ABSTRACT

Field evaluations have determined that camouflage patterns reduce detectability ranges for
uniforms and vehicles in woodland eavironments, This study identified the effects of three pat-
terned and two monotoned Five-Soldier Crew Tents using detection ranges and number of false
detections as determined by ground observers. The distance of correct detections were recorded
along with the number of false dstections. An analysis of variance for the detection ranges and
number of false detections was performed. The Duncan’s Multiple-Range Test was used to
determine significant differences (¢ = 0.05) in groups of tents, From this data, it was deter.
mined that the three patterned Five-Soldier Crew Tents were more difficult to detect than the
two monotone tents,

1,0 SECTION U - INTRODUCTION

Several years ago, the U.S. Army decided that camouflage patterns have a definite ad-
vantage when usced on uniforms and vehicles in woodland environments. This had led to a similar
consideration for tcats, since the current U.S, Army tents are solid (i.e.,, monotone) color. Tents
present a large, relatively smooth form, making them conspicuous targets. The use of patterns
to break up this signature could increase camouflage effectivericss, However, before such a
judgement could be made, a field test was planned to determine the relative merits of various
patterns versus monotones in a woodland background, The Natick RD&E Center fabricated
three patterned tents and two monotone tents for evaluation. In consultation with Belvoir, the
patterned tents were fabricated in the standard four-color uniform pattern, one in the standard
pattern size and the other two in progressively larger expanded patterns. The two monotone
tents were in colors Forest Green and Green 483 (483 being the textile equivalent of paint color
Green 383). A tost plun” was developed by Belvoir at the request and funding of Natick, and
the field test was conducted by Belvoir at Ft. Devens, Massachusctts, in the summer of 1987,
This report describes the test and its results.

189




2.0 SECTION II - EXPERIMENTAL DESIGN

2.1 Test Targets

Five, Five-Soldier Crew Tents were supplied by Natick for this study in lhe'following pat-
terns and colors:

e Tent A - Standard size four-color uniform pattern repeated every 27.25 inches
e Tent B - Forest Green
e Tent C - Expanded four-color uniform pattern repeated every 36 inches
¢ Tent D - Expanded four-color uniform pattern repeated every 50 inches
¢ Tent E - Green 483
22 Test Sites

The study was conducted at the Turner Drop Zone, Ft, Devens, Massachusetts, a large
cleared tract of land surrounded by a mix of coniferous and deciduous trees resembling a central
European forest backgrouad. Two test sites were selected, Site #1 was located on the western
end of the drop zone, so that the morning sun shone directly upon the test tent, Site #2 was
located on the eastern edge of the drop zone, so that the afternoon sun shone directly upon the
test tent. An observation path, starting at the opposite end of the drop zone from the test tent
location, was laid out for each site. Each path followed zig-zag, random length directions toward
its test site, and afforded a continuous line of sight to its respective test teat location, The
paths were within a 30° to 40° cone from the target tents, and were surveyed and marked at ap-
proximately 50-meter intervals using random letter markers. For Site #2, the distance between
markers after the first 15 markers was about 25 meters along the path., A night evaluation in-
volving other camouflage targets led to this procedural change, The markers and distances from
the tents are shown in Tables 1 and 2,




Table 1

Distances of Markers to Tents for Site #1

ALPHABET DISTANCE IN ALPHABET DISTANCE IN
MARKER METERS ALONG MARKER METERS ALONG
PATH FROM PATH FROM
STARTING POINT STARTING POINT

TO TENT TO TENT

S 1,162.64 S’ 464.78

Y 1,128.57 Y! 448.74

Q 1,084.00 Q' 428.17

L 1,049.93 L' 413.48

F 1,008.07 F' 308.48

P 978.31 P’ 383.34

E 947.02 E' 364.64

K 902,756 K' 348.27

A 858.10 A' 334.48

T 817.01 T 322.69

v 778.91 A 308.89

B 750.15 B’ 289.59

M 700.76 M 281.680

V) 674.87 VY 269.08

H 702,65 H' 253.18

4 677.69 r A 238.50

R 648.46 R’ 217.81

N 613.35 N’ 199.60

X 802.58 X' 178.93

| 594.57 I 158.76

D 578.08 D’ 14115

C 561.16 o 120.05

o) 541.70 Q' 102,34

J 525.33 J! 85.37

G 505.62 G’ 82.81

w 483.64 W 41.84
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Table 2

Distances of Markers to Tents for Site #2

ALPHABET DISTANCE IN ALPHABET DISTANCE IN
MARKER METERS ALONG MARKER METERS ALONG
PATH FROM PATH FROM
STARTING POINT STARTING POINT

TO TENT TO TENT

F 1,206.36 A 853.34

w 1,168.83 r4 813.20

v 1,130.58 E 574.09

Q 1,086.03 P §40.30

C 1,048.10 H §13.10

R 1,008.15 K 496.48

Vv 982.00 S 475.57

0 874.13 F' - 45010

M 942,37 W a7Nn

| 901.58 U’ 379.40

B 869.75 Q' 338.25

J 888.01 c’ 296.90

L 851.64 R’ 278.53

X 841.26 v! 258.20

c] 803.85 o’ 220.73

o) 764.09 I 180.87

Y 723.48 B' 143.94

T 695.32 J! 111.00

N 673.60 L’ 69.78

2.3 Test Subjects

A total of 153 enlisted soldiers from Ft. Devens served as ground observers. All person-
nel had at least 20/30 corrected vision and normal color perception. A minimum of 30 observers
were used for each test teat, about evenly split between test sites. Each observer was used oaly
once,

2.4 Data Generation

The test procedure was to determine the detection distances of the five tents involved by
searching for them while traveling along the predetermined measured paths., Each ground ob-
server started at the beginning of the observation path, i.e., marker S for Site #1 and marker
F for Site #2. The observer rode in the back of an open 5/4-ton truck accompanicd by a data
collector. The truck traveled down the observation path at a very siow speed, about 3-5 mph.
The observer was instructed to look for wilitary targets in all directions except directly to his
rear. When a possible target was detected, the observer informed the data collector and pointed
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to the target. The truck was immediately stopped, and the data collector sighted the apparent
target. If the sighting was correct, i.e., the Five-Soldier Crew Tent, the data collector recorded
the alphabetical marker nearest the truck. If the detection was not correct, the false detection
was recorded, and the data collector informed the observer to continue looking. The truck
proceeded down the observation path. This search process was repeated until the correct tar-
get (tent) was located.

The tents were rotated between the two test sites on a daily basis, until all teuts hud been
observed by at least 15 observers at each site. (This number of observers allows the use of
parametric statistics which have a guod opportunity to yield absolute conclusions). Their orien-
tations with respect to the sun were kept constant at both test sites. The Five-Soldier Crew
Tent was positioned so that a full side was facing the direction of observer approach,

3.0 SECTION III-RESULTS

3.1 Range of Detection

Tables 3, 4, and 5 show the detection data for the Five-Soldier Crew Tents, Table 3 gives
the mean detection range in meters for each tent, and its associated 95 percent confidence in-
tervel, Table 4 shows the analysis of variance? performed upon the data of Table 3 to deter.
mine if there were significant differences in the detection ranges, i.c., if pattera and color had
an effect upon detection range. Table § indicates which tent patterns and solid colors differed
significantly from each other in this respect. Figure 1 is a graphic display of the detection ran-
ges of Table 3,

Table 3

Mean Detection Ranges (Meters) and 95 Percent
Confidence Intervals.

98 PERCENT CONFIDENCE
STANDARD INTERVAL
TENT N MEAN ERROR LOWER LIMIT UPPER LIMIT
A U 327.54 127,75 280.68 374.40
8 0 427.7 173.74 362.83 492,68
Cc a2 351.17 129.42 304.51 397.83
D 30 387.12 161,78 326.76 447.59
E 30 674.88 214,94 584.62 755.14




Table 4

Analysis of Variance for Tent Detection
Across Five Levels of Color Variation

DEGREES
oF
SOURCE FREEDOM  SUM OF SQUARES MEAN SQUARE F-TEST SIG LEVEL
TENT COLOR 4 2,377,907.968 594,476.9927 22,0083 0.00*
ERROR 148 3,983,214.260 26,913,609
TOTAL 182 6,361,122.228

*Significant at o less than 0,001 level,

Table 4 indicates that there are significant differences in the ability of the ground observers
to detect the Five-Soldier Crew Tents in different four-color patterns and solid colors

L
170 785.1411

1

810
643 Jf'
620 _

sre $94.6183

500 - 4923799
433 447,9931

410 197.1280
120 3743587

RANGE OF DETECTION (METERS)
{

150 XLV

120 ' 326.7613
o+ 104.5039

73 —1
280.6794
260

| | | I l

A ? ¢ D l
FIVE SOLDIER CREW TENTS

Figure 1. Mean Ranges of Detection and 95 Percent
Confidence Intervals lor Five-Soldler Crew Tents




Table §

Duncan’s Multiple-Range Test (Range of Detectinn)

SUBSET 1 SUBSET 2 SUBSET 3
GROUP MEAN GROUP MEAN GROUP  MEAN

A 327.54 c 351.17 E 874.88

c 351.17 D 387.12

D 387.12 B 427.71

The harmonic mean group size is 30.58. The subsets are significant at ¢ = 0.05

The Duncan's Multiple-Range test separates a set of significantly different means into sub-
sets of homogeneous means, One of the assumptions is that each random sample is of equal
size. Since this was not true, the harmonic mean of the group was used as the group size. As
seen above, the range of detection was the shortest for tents A, C, and D and these tents do
not differ significantly from each other (a = 0.05), Tent E had the longest mean range of detec-
tion and is significantly (o« = 0.05) different from the other 4 tents in this respect,

. 32 False Detections

The number of false detections is defined as the number of times a target other than the
* test target is detected by an observer. In this study such detections are rocks, trees, shadows,
etc, These detections, as a rule, are a function of how hard it is to detect the test target. The
more difficult the detection task, the greater the number of false detections. Tables 6, 7, and
8 show the false detection data, Table 6 gives the mean false detection value, and its associated
95 percent confidence interval, for each of the Five-Soldier Crew Tents, Table 7 contains the
analysis of variance performed upon the data of Table 6 to determine if there were significant
differences in the rate of false detections. Table 8 indicates which tent patterns and colors had
significant rates of false detection,

Table 6

Mean False Detection Rates and 95 Percent Confidence Intervals

96 Percent Confidence

Standard Interval
Tent N Mean Error Lower Limit Upper Limit
A 3 4.87 3.27 3.67 6.07
B 30 3.53 2,53 2.59 4.48
c 32 3.38 1.96 2.87 408
D 30 3.87 2.76 283 4.90
E 30 2.50 1.91 1.79 3.21
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Table 7

Analysis of Variance for Rates of False
Detection across Five Levels of Color Variance

DEGREES
OF
SOURCE FREEDOM  SUM OF SQUARES MEAN SQUARE F-TEST  LEVEL
TENT COLOR 4 90.086 22,521 3.50 0.009
ERROR 148 953.417 6.44
TOTAL 182 1043.503

Significant at less than 0.01 level.

Table 7 indicates that there are significant differences in the rates of false detection for
the Five-Soldier Crew Tents.
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Figure 2. Mean Rates of False Detection and 95 Percent
Confidence intervals For Five-Soldler Crew Tents
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Table 8

Duncan’s Multiple-Range Test
(Rates of False Detection)

SUBSET 1 ' SUBSET 2

GROUP  MEAN GROUP  MEAN
E 2.50 B 3.53
c 3.38 D 3.87
B 3.53 A 4,87
D 3.87

Harmonic mean group size is 30.58,

The rates of false detection for tent groups E, C, B, and D, and B, D, and A were not sig-
nificantly different (a = 0.05). However subset 1 is significantly different from subset 2,

4.0 SECTION IV - DISCUSSION

The Duncan’s Multiple-Range Test (Table 5) shows that the group of Five-Soldier Crew
Tents A, C, and D had the shortest detection range. Tent A is the standard size woodland
uniform four-color pattern, while Tents C and D are expansions of this pattern. The pattern at
Tent A is repeated overy 27.25 inches, the pattern for Tent C is repeated every 36 inches, and
the pattern for Tent D is repeated every 50 inches, Tents C, D, and B are significantly different
from each other. Tent B is solid color, Forest Green. Tent E, which is not solid color Green
483, had the longest mean detection range (674.89 meters), and this is significantly (¢ = 0.05)
longer than any of the other means for the Five-Soldier Crew Tents. Thus, it can be concluded
that the patterned tents are harder to detect from ground observation, but that the pattern
should not be expanded beyond the repeat of every 36 in: hes. The human eye is probably resolv-
ing the larger pattern repeated every 50 inches as bein,. different from the tree and bush back-
ground (the color brown, in particular, becomes distinguishable from the woodland background
when overexpanded).

When working with detection ranges, the question of field data stability is always paramount
to the amount of weight that can be given to the test conclusions. One of the best methods to
determine data stability is through a test-retest procedure. Field studies are very expensive and
time consuming, so this data is very rare. We¢ do have such an opportunity to examine this type
of data for the Turner Drop Zone, A ground evaluation of camouflage nets was conducted in
the summers of 1985% and 1987%. The net sites and test procedures were identical to the sites
and test procedures in which the Five-Soldier Crew Tents were evaluated. [n both net studies,
the standard camouflage net was cvaluated. In 1985 this net had a mean detection range of
411,75 meters, while in 1987 the mean detection range was 414,41 meters. This difference in
mean detection range is only 2,66 meters. From these results, it is inferred that the mean detec-




tion ranges for the Five-Soldier Crew Tents are stable, and solid coaclusions about their
camouflage effectiveness can be made.

The analysis of false detections seen in Table 8 and Figure 2 also lends credence to the
belief that the Five-Soldier Crew Tent A had the best performance as to camouflage effective-
ness, with Tent E the worst performance, In the following discussion of false detections in Sec-
tion 3.2, it would be expected that Tent A, being the hardest to find, would have the most false
detections, and Tent E the least number of false detections. This is exactly what occurred, with
Tent A having a mean false detection rate of 4.87, and Tent E a mean false detection rate of
2.50. Duncan's Multiple-Range Test (Table 8) shows that the two rates of false detection dif-
fer significantly (o = 0,05) from each other. The false detection rates of tents B, C, and D are
not in the expected ordinal position. The expected order, based upon mean range of detection,
would be B, D, and C, while the true order of rates of false detection is C, B, and D. However,
a check of Tables § and 8 shows that these tents are not significantly different from each other
either for range of detection or for rate of false detection. Thus, from a statistical view, these
three tents are considered to have the same ordinal position,

£.0 SECTION V.SUMMARY AND CONCLUSIONS

Five, Five.-Soldier Crew Tents were evaluated by ground observers to determine their
camouflage cffectiveness as measured by the mean detection range and the mean rate of false
detection. These tents were in the following four-color camouflage patterns and solid colors:

o Tent A . Standard size four-color uniform pattern repeated every 27.25 inches,
e Tent B - Forest Green

e Tent C - Expanded four-color uniform pattern repeated every 36 inches

e Tent D - Expanded four-color uniform pattern repeated every SO inches

e TentE - Green 483

A minimum of 30 ground observers per Five-Soldier Crew Tent were driven toward each of two
sites on marked observation trails in the back of an open 5/4-ton truck. The observers were
looking for military targets, and they informed the data collector when they thought they saw
one. If the detection was correct, the ciosest alphabetic ground marker to the truck was recorded.
From this letter, the distance to the tent from the truck was determined. If the detection was
not correct, i.e., false detection, it was noted on the data sheet. The ground observer then con-
tinued the search, with the truck traveling down the observation path until the test target was
seen, An analysis of the resulting data provided the following conclusions:

A. Five-Soldier Crew Tent A was the most camouflage effective, with the lowest mean
range of detection and highest rate of false detections,

B. Four-color pattern Five-Soldier Crew Tents are more camouflage effective than solid
colors.




C. The expanded four-color pattern, repeated every 50 inches, is too large to be effective
in denying detection. (The color brown becomes distinguishable from the woodland background
when overexpanded).

D. The solid colors Green 483 and standard Forest Green should not be used.

E. The mcan range of detection data appears to be very stable, A test-retest field study
using identical sites and test procedures in the summers of 1985 and 1987 involviag the stand-
ard camouflage net yiclded mean detection ranges of 411,75 and 414,41 meters respectively.
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ABSTRACT

The Probability and Statistics Branch of the Ballistic Research Laboratory was asked to
develop a procedure of acceptance testing for armor packages. Because the available sample
sizes were extremely small, we were unable to identify a sampling plan directly applicable to
this problem. Accordingly, we have devised a new procedure by adapting an existing tech-
nique, known as chain sampling, to both the attribute portion (structural integrity) and the
variable portion (penetrat_ion depth) of the acceptance testing process. Operaﬁng charac-

teristic curves and power curves are presented for this procedure, and suggestions are made

concerning the simultaneous use of quality control charts,




I. INTRODUCTION

In most cases a consumer’s decision concerning whether or not to accept a manufac-
tured product is based on an examination of a sample from that product. When General
Mills introduces a new pre-sweetened breakfast cereal, they spend millions of dollars in
advertisement costs with the hope that the consumer will sample it. Here, the consumner con-
siders the entire supply of this new cereal as a single manufactured lot, to be accepted or
rejected. Product acceptance, in this case, corresponds to the consumer purchasing more
boxes of the new cereal.

This is merely an everyday example of what is known as acceptance sampling, that is,
various techniques which allow for discrimination between an acceptable product and an
unacceptable one. Sampling may be based on an attribute criterion, a variable criterion, or
some combination of these. In our example the consumer may judge the sweetness of the
cereal as satisfactory or excessive (attribute), or he may measure the time in milk before the
cereal becomes soggy (variable). Sampling by attributes is a dichotomous situation in that,
based on a particular attribute, each item is either defective or non-defective; rejection occurs
if there is a high percentage of defectives in the sample. Sampling by variables establishes an
acceptable level of a particular variable, and rejection occurs if its sample value crosses the
acceptable threshold. Of course, in our example of a box of cereal, the sample size was one,
Generally, this will not be the case; but occasionally, for one reason or another, the consumer
is forced to make a decision based upon a very small sample size.

Because decisions are made from samples, there is some risk of error, either the error of
accepting a bad product or the error of rejecting a good product. The amount of protection
desired against such risks can be specified. The Acceptable Process Level (APL) is a high-
quality level that should be accepted 100(1-a)% of the time; « is thus defined to be the
producer’s risk. The Rejectable Process Level (RPL) is a low-quality level that should be
accepted only 100(8)% of the time; 8 is thus defined to be the consumer’s risk. Unfor-
tunately, these error factors vary inversely; that is, as the consumer’s risk grows, the
producer’s risk diminishes and vice versa. The Operating Characteristic (OC) curve is an
important part of any acceptance sampling plan, since it provides a graphical display of the
probability of accepting a product versus the value of the particular parameter being
inspected. The OC curve is a function of APL, RPL, e, and g, as well as sample size, Given a
particular acceptance sampling plan, the OC curve depicts the associated error risks and
demonstrates the relationship among all of the variables.

The US Army Ballistic Research Laboratory (BRL) has developed acceptance sampling
plans for armor packages. These plans were briefed to the Project Manager M1Al on 14
April 1988 at Aberdeen Proving Ground, Maryland. Their general structures were accepted
with the guidance that the processes would be officially adopted pending some refinements.




II. CHAIN SAMPLING

Numerous sampling techniques exist, each with special properties that make it applica-
ble to particular situations., Sampling plans reviewed in the literature required sample sizes
much larger than those feasible for armor testing. In our case extremely small sample sizes
were warranted due to the expense of both the armor and the testing procedure, augmented
by the destructive nature of the test itself. Accordingly, we have devised a new procedure by
adapting an existing technique, chain sampling, for use in this project.

Chain sampling {s particularly appropriate for small samples because it uses information
over the past history of production lots. Even with small samples, it is possible to accept a
marginal lot provided that a given number of lots immediately preceding (i.e., the chain) were
acceptable. When a consumer uses an expendable product such as the breakfast cereal in our
previous example, he utilizes chain sampling in his decision of whether or not to subsequently
purchase the same product. If the first or second box he buys is unacceptable, he will prob-
ably discard the product forever. However, if the tenth box is unacceptable, he might con-
tinue with one more purchase of the same cereal taking into consideration its past history of
nine boxes of acceptable quality.

An advantage of chain sampling is its automatic incorporation of reduced or tightened
inspection procedures when applicable. That is, as quality remains acceptable over a period
of time and our confidence grows, the sample size is reduced (or, more accurately, samples
are taken less frequently). If quality becomes marginal, inspection is tightened by taking sam-
ples more frequently. When quality diminishes to the point where a production lot must be
rejected, the production process is stopped and necessary adjustments and corrections are
made. At that point a new chain begins and continues as before.

Certain assumptions must be made before chain sampling is considered as a sampling
technique. In particular, production should be a steady, continuous process in which lots are
tested in the order of their production. Also, there should be confidence in the supplier to
the extent that lots are expected to be of essentially the same quality. Generally, a fixed sam-
ple size will be maintained with the investigator taking more or fewer samples as tightened or
reduced inspection is dictated.

III. ACCEPTANCE SAMPLING PLAN

The armor packages tested at the BRL consist of a right side and a left side, which are
designated as one set. One month’s production is considered to be a production lot. Every
month we continue testing one set at a time until a decision can be made about that produc-
tion lot. For a given set, one shot is fired into each side; and, if spacing on the target permits,
a second shot follows. In each of the first three months, a total of at least four shots is
required in order to make a decision concerning that month’s production. This provides addi-
tional confidence during the early stages of the plan. There are two portions of the accep-
tance sampling plan. The first is structural integrity, handled using attribute methods; the
second is depth of penetration of a particular round fired into the armor, handled using vari-
able techniques. For both portions, decisions concerning a production lot should be based
upon the data from all available shots on that lot.
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A combined chain sempling plan was proposed. The maximum length of the chain was
fixed at eight, meaning that after the chain has been established, we will consider the current
set along with the seven immediately preceding. While the chain is growing, there is an area
between the criteria for acceptance and rejection in which we can make no decision, At least
one set will be tested each month; but if no decision can be made, tightened inspection will
dictate the examination of additional sets, possibly up to a maximum of eight. Table 1 shows
the relationships among months, sets, and shots for this particular procedure. Note that the
maximum number of sets and, hence, the maximum number of shots decrease over time as
the chain is being formed. Following the third month and the concurrent drop in the
minimum number of shots, then when the chain is at its full length (definitely by the eighth
month), one set and at most four shots are all that is required in order to make a decision for
each subsequent production lot.

A rejection in either the structural integrity or the penetration depth will result in overall
rejection of the production lot. In that case production is stopped, adjustments and correc-
tions are made, and testing resumes with the construction of a new chain. If neither measure
results in a rejection but at least one falls within the no-decision region, another set should be
examined and both categories re-evaluated using the addi.'onal data.

A. Acceptance Sampling by Attributes

Projectiles are fired at these packages, which are then inspected for structural integrity.
With attribute sampling, only two outcomes are possible, The structural integrity is assessed
to be either defective or non-defective, regardless of the number of shots. Any decision to
either accept or reject a lot is based on the number of defective plates in the sample being
considered.

Chain sampling is employed in this attribute sampling plan. Results from the most
recent eight sets influence decisions regarding a lot. A lot can be either accepted or rejected
at any time (except for one case discussed in the next paragraph). In the early stages of sam-
pling there is also an area in between acceptance and rejection where no decision is rendered
immediately but sampling is continued. After a chain reaches its full length of eight sets, a
decision to accept or reject is made immediately.

In the sampling plan, a safeguard is built in to prevent rejection of a good lot after only
one set. If there are no defectives in the first set, the lot is accepted. Otherwise, no decision
is made. Subsequently, rejection would occur only when there were three or more failures in
the most recent eight sets.

Table 2 shows the decision rules for a chain building to a maximum length of eight. The
OC curves for this plan are depicted in Figure 1. It shows that for a chain at full length, the
probability of accepting a lot whose true defective rate is 5% is equal to 0.96, while the proba-
bility of accepting a lot whose true defective rate is 10% is equal to 0.79. Power curves for
the plan are depicted in Figure 2. For a chain at full length, the probability of rejecting a lot
from a process whose true defective rate is S% is equal to 0.04, while the probability of reject-
ing a lot whose true defective rate is 10% is equal to 0.21. (Note, if these probabilities are
deemed to be unsatisfactory, a different plan providing more satisfactory levels couid be
developed by varying the maximum chain length or modifying the decision rules).
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TABLE 1, Relationships Among Variables in Chain Sampling Procedure

Required Sets Required Shots
Month | Minimum | Maximum | Minimum | Maximum
1 1 8 - 4 32
2 1 7 4 28
3 1 6 4 24
4 1 5 2 20
5 1 4 2 16
6 1 3 2 12
7 1 2 2 8
8 1 1 2 4
9 1 1 2 4
. )
\

k 1 1 2 4
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TABLE 2. Decision Rules for Acceptance Sampling by Attributes.

DECISION RULES

SET
NUMBER | ACCEPT | REJECT | NO DECISION
1 f,=0 £2>1
2 2 2
2 TH=0| D23 1SN £<2
i=1 i=1 =1
5 5 5
S S =0 523 1< f<2
(a1 i1 jul
6 6 6
6 ¥ fi<1 Y23 Y fi=2
i=1 w1 im1
7 7 7
7 i<l Y23 S f =2
w1 im1 i=1
8 8
8 <2 | D23 .
=1 i=1
0 9
9 T2 | T3 -
{w2 im2
k k
k r <2 2§23 ---
juk-7 juke

f = number of failures in set i
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B. Acceptance Sampling by Variables

When primary interest is in a process level rather than a percent defective, sampling by
variables is the proper procedure, For the armor packages, depth of penetration for a partic-
ular munition was the process level of interest. When variable sampling plans are established,
two major assumptions must be satisfied: first, the distribution of the variable of interest
must be known; and second, a good estimate of its standard deviation must be available.

In our particular problem there were 22 baseline shots from which we were to determine
a distribution and estimate its standard deviation, as well as establish acceptable and reject-
able process levels (APL & RPL). The 22 shots had a mean (X,) of Smm with a standard
deviation (s,) of 30mm. The data had been transformed, allowing for both positive and nega-
tive penetration values. When plotted, the data appeared normal; and, indeed, the hypothesis
of normality could not be rejected using statistical goodness-of-fit tests. The APL was esta-
blished at 20mm (1/2 baseline standard deviation from the baseline mean) and the RPL was
set at 80mm (2 1/2 baseline standard deviations from the baseline mean), o, the probability
of rejecting at the APL, was set at 0.05; and 5, the probability of accepting at the RPL, was
allowed to vary with the sample size -- for a sample of size four, 8 would equal 0.10.

As In the attribute case, a set consists of a right side and a left side. For each set an
attempt will be made to fire a second round into each side. Because this might not always be
possible, due primarily to discrepancies between the aim point and the hit location, each set
can result in either two, three, or four data points, depending on whether or r.ot both shots on
each side are considered to be good hits, It is important that during the first three months,
while the chain is being formed, at least four shots are available upon which to make a deci-
sion, Table 3 outlines the decision rules for the variable sampling plan. Like the attribute
sampling plan, it incorporates chain sampling with a maximum length of eight sets. The plan
will not reject based on the first sample, and it has a region of no decision until the chain
reaches its full length. In this table, X represents the mean penetration depth for all shots
currently considered, s represents the standard deviation of this sample, n is the total number
of shots used in computing X, and t o represents the 95th percentile of the t-distribution for
the appropriate degrees of freedom (n-1). Thus, n can vary from 2 to 32 depending upon the
length of the chain and the number of shots available on each side of the armor package.

Because n varies so widely, any one of many OC curves may be applicable. Figure 3
shows these curves for sample sizes 2, 32, and many integers in between. The abscissa value,
D, represents a multiple of s, from X, ; thus, the numbers in parentheses are the penetration
depths in millimeters. Note that for all n, the probability of accepting at the APL is 0.95 .
(1-a). Because the probability of accepting at the RPL is too high for n=2 and n=3, the pro-
cedure will not allow lot acceptance at these small sample sizes (see Table 3). Table 4 pro-
vides the values for the t-statistic for (1-a)-levels of 0.99 and 0.95 and degrees of freedom
from 3 to 31.

Power curves show the probability of rejecting a particular lot. Generally, they are noth-
ing more than the complement of OC curves, However, for our procedure this is not the
case, since there is a region of no decision. Figure 4 shows the power curves for this variable
sampling procedure. Basically, there are two sets of curves -- the first two pertaining to a =
0.05 and the next three pertaining to @ = 0.01. Note from Table 3 that in order to reject
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TABLE 3. Decision Rules for Acceptance Sampling by Variables.
DECISION RULES
SET . .
NUMBER ACCEPT REJECT NO DECISION
1(n<4) e - ALL
. X -APL X -APL
1 (n = 4) St‘95 ahaid > t.gs
s/Vn s/Vn
X-APL X -APL
2 (combine with 1) 'St g >t g6
s/Vn s/Vn
R X -APL X -APL X -APL
3 (combine with 1,2) ——— Sty Stog | tgg2 >t gs
s /vVn s/vVn s/Vn
L X -APL X -APL X-APL
7 (combine with 1-6) <t g Sten | tog2 >t g
- s/vn s/Vn s/Vn
, X -APL X -APL
8 (combine with 1-7) <t > t g
s/vVn s/Vn |
X -APL X -APL
s/Vn s/vVn
L X -APL X -APL
k (combine with (k-7) - (k-1)) Stos | = >t ---
s/Vn s/Vn

* At least four shots are required in each of the first three months;
otherwise, regard as "No Decision",
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TABLE 4. Values of the Cumulative t-Statistic

Degrees of Freedom (1-a) - level
(n-1) 095 | 0.99
3 235 | 454
4 2.13 | 375
5 2.02 | 337
6 1.94 | 2.14
7 1.90 | 3.00
8 1.86 | 290
9 183 | 2.82
10 181 | 2.76
11 1.80 | 2.72
12 1.78 | 2.68
13 177 | 2.65
14 1.76 | 2.62
15 175 | 2.60
16 175 | 2.58
17 174 | 2.57
18 173 | 2.55
19 173 | 2.54
20 173 | 2.53
21 172 | 2.52
22 172 | 251
23 171} 2.50
24 171 | 249
25 1.71 | 249
26 171 | 248
27 1.70 | 247
28 170 | 247
29 1.70 | 2.46
30 1.70 | 246
31 1.70 | 245

*This table is abridged from Tables of the Probability Integral of the Central t-Distribution

by R.E. Mioduski, BRL Technical Note #1570, August 1965.
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before the chain is at its maximum length, we use the smaller o~level, and Figure 4 shows
some possible sample sizes for a = 0.01. If we reject at an a~level of 0,05, our sample size
must be somewhere between 16 and 32; and these curves are also shown in Figure 4. Gen-
erally, the power curves are of more interest to the producer than the OC curves, since they
highlight the producer’s risk.

C. Quality Control Charts

Variations in the manufacturing process are either random or assignable, A process is
"in control" when only random variations are present. Assignable variations, if uncorrected,
may eventually result in rejection of a manufactured lot. However, they can often be
identified through the use of quality contrnl charts,

A quality control chart is a graphical comparison of test data with some previously com-
puted control limits. The most common quality control chart is the Shewhart chart, named
for its originator, Dr. Walter A, Shewhart., Figure 5 is a Shewhart control chart for mean
penetration depth, the variable of interest in our armor package acceptance sampling plan,
" The APL is the central line with an upper control limit equal to the RPL, two baseline stan-
dard deviations away from the APL. If we were concerned about extremely low penetration
depths, we would incorporate a lower control limit as well, Assuming a normal distribution
with parameters equal to those of the baseline data implies that if only random variations are
present, 99.38% of the time the mean penetration depth of the sample will fall below the
upper control limit. This leaves a false-alarm frequency of less than 1% (0.629%) - so low that
this control limit seems to be a reusonable threshold to dlstingulsh between random varia-
tions and assignable variations,

The mean penetration depth is plotted for consecutive sets of armor plate, If, over a
period of time, we see a drifting toward the control limit, the process can be examined and
adjusted. This might possibly eliminate some future rejection of an entire lot.

A similar chart should be constructed for the range of penetration depth within the sam-
ple, to insure that the variability of the armor packages is not increasing. A third chart for
structural integrity, the attribute of interest in our acceptance sampling plan, would also be
useful. In each case appropriate upper control limits must be established.

Over the years alternative quality control charts have emerged, each with their own set
of advantages and disadvantages. One of the most populer has been the cumulative sum con-
trol chart (cusum chart). Here, decisions are made based on all the data rather than just the
last sample. An advantage of the cusuin chart is that it often displays sudden and persistent
changes in the process mean more readily (that is, with fewer samples and less expense) than
a comparable Shewhart chart. However, control limits are somewhat less intuitive and,
therefore, more difficult to establish. Somewhere in between the Shewhart chart and the
cusum chart are quality control charts that use some, but not all, of the past data. Many of
these techniques incorporate a weighting factor, providing more weight to the most recent
data.




doqq uonEnauay UEI S0§ LEY) [onueD) AN[EnD S FANOL

Iaquuny 19S

02 Cc1 01 G 0
t L 1 1 Q

0e

JdV = 9uUT] TelIlu3d)

- OF

215

- 09

1dd = 3INTT [oxzuc) xaddp - 09

(aur) yiydeq uoljeajauad uUeaj

- 001

jIey) [0I1U0) }IeYMIYS




It is important that some type of quality control charts be represented in the acceptance
sampling plan. They are relatively easy to maintain and might provide early warning signs
which could be beneficial to both the producer and the consumer.

IV. CONCLUSIONS

Generally, it is not feasible for a consumer to inspect every item from a production lot
that he might want to purchase. A judicious choice of a lot acceptance plan will allow him to
sample the production lot and determine with a pre-established level of confidence whether
or not it meets his specifications, Chain sampling is a particular method of lot acceptance
sampling used when sample sizes are small. It utilizes the most recent lot information to pro-
vide more confidence in the decision.

In testing armor packages for acceptance by the US Army, chain sampling provides a
logical method, since destructive testing dictates small sample sizes, A technique involving
both structural integrity (attribute sampling) and penetration depth (variable sampling) has
been proposed. One set of armor packages is represented by both a left side and a right side.
The procedure allows for accepting the production lot (one month’s production) after exa-
mining just one set. It allows for rejecting the production lot only after testing at least two
sets. There s a reglon of no decision; but after the chain has reached its maximum length of
eight sets, a decision must be rendered,

Operating characteristic curves and power curves provide the probability of accepting
and rejecting lots given a percent structurally defective (attributes) and given a mean penetra-
tion depth (variables).

In addition to the acceptance sampling plans, control charts should be used for both the
attribute and variable parameters. These charts display sample results for particular parame-
ters such as percent defective, mean penetration depth, and variability of penetration depth.
The data might be presented as individual sample points or as sums over a preceding number
of samples. By continually examining the control charts, we can see when one of the parame-
ters is drifting toward the rejection region, enabling the producer to make adjustments and,
possibly, preventing rejection of an entire lot of armor plate.

The proposed lot acceptance plan was briefed to the Project Manager M1A1 on 14 April
1988 at Aberdeen Proving Ground, Maryland. It was approved and will be adopted subject to
any refinements agreed upon by both the US Army Ballistic Research Luboratory and the
Project Manager.
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SOME NOTES ON VARIABLE SELECTION
CRITERIA FOR REGRESS|ON MODELS
(AN OVERVIEW)

Eugene F, Dutoit
U.S. Army infantry School
Fort Benning, Georgia

Abstract. There are several decision rules for determining when
to enter additional independent variables into |insar muitiple
regression, Three of these are: (1) examining the incremental
significance in the muitiple correlation coefficients, (2)
Ma!lows' C, statistic to determine the best combination cof
independent var iables, and (3) considering the changes in
magnitude ot the standard error of estimate. This paper will
examine some of the interrelationships between the threae methods
cited above. These relationships will be applied to a data set
and the results presented.

Acknowl!eadgement. The author wishes to thank Professocors Ron
Hock ing and Emanue! Parzen for their comments and suggestions,
It is this spirit ot freely shared Ideas that makes thesa
“Design of Exper iments Conferasnces”" valuable to Army
statisticlans,

1. Thne Problem.

Gliven exper imental data in the form:

Y x1 X’ &1 [ » 2 X'
Y X1 X12 X123 . e X1 g
Ya Xa Xaa Xaa e e Xaa
Ya X Xaz Xaa o e Xag
Yn xn1 Xn. x'wa 0 . . XHQ
whare (X1, Xa, Xa, . . ., Xq! are candidate

independent variables (that make sense according to some
thaoretical bases) and Y is the dependant variable. The
regsearchar wants to form some mode!

K
Y'-n+§ b X, (1

where k< q. This would indicate the model (equation 1)
consisted of the best set of candidate indepandent variables.
This papar will provide an overview of the following measures
and criteria in order to shed some |ight aon this probiem.

219

e e e b

——




2. The Muitiple Correlation Coetticient. (R2)

.. inoremantal Significancae., . Tha wall known test for the
incrementel significance In R2 by adding an additional

independant variable X into esquation (1) is:
Fe (R2% 3. 2,.. .k =~ R3 . +v.3,,.kg) / (k3 = kg) (2)

(1 -~ R2,.4,a,...ks) /7 (N = Ky = 1)

where ki = pnumber of independent var iables for larger R2
ka = number of indepesndent varicbles for smailer R2
R®,.1,a,...vu1 = larger R2
R%,.1,a,...na ® smallaer R?
N = number of cases

The test follows an F distribution with degrees of frasdom squa)
to (k1 - ka), (N = ky = 1),

b. Adjusted R2. As Iindependent varlables ars added to
equation (1), the value of R® will also increase. This
increase may be small (i.e., statistically not signitficant). In
order to account for this mathematical incresase in R2, the
so-called shrinkage formula is used to csicuiate an adjuasted
R2 am: :

R* ad] = R3, - (1 - _R2.) (3)
N -k =1

where k = number of Independent varisbles In regression.
N = number of casmes.

3. Mallows' Cp Statistic. Myers (refsrence 1) presents the Cp
statistic in the fcllowing form:

Cp = p + (82 - 43)( N - p) (4)
0‘;3

where p = k + 1

63 = getimated variance of the compliete model (!.e.;
all independent variables included).

S® = ggtimuted variance of the candidate (subset)
modei .

N = number of cases.

g2 and S2 are obtained as the residual mean squares from
the ragression ANOVA,

The following Interpretntion |s based on the dimcusaion from the
Myers (refarence 1) text:




Ce

- Nw e

Refarence to equation (4) shows that If 8% < § *, the plot

ot Cp will fal! below the Iine Cp = p,. The above inequality Is
des irable for it states that the variation about some subset
regression mode! is |ess than the variation asbout the full

mode!, Only point C in the above diagram meats this condition,
This concept will be discussed in the following paragraph
concerning the atandard error of estimate about regression, It
should be noted that |4 {S2 = 33}, then equation (4) becomes
Cp=p. This is always the case for the full model. An
alternative format for Cp is given by Daniael and Wood (reference
2) as:
Cp = RSS,,. = [N ~ 2 p] (B)

&:I

where p = k + i (as before)

RSS.. = residual sum of squares with k independent variable
(p parameters)

0 2 = residual mean square of the complete maodel (as

betore) .,

{t can be shown (not here) that equation (8) s egquivalent to
equation (4).

3A. Another Alternative Form for Cp. Given gq independent
veriables, the total! regressl|on mode!l is:

AY = 5 + b1x1 + bﬂx=+- 0 ."‘b.x. (a)

The regression ANOVA table i8s presented below as Figure 2,

Figure 2
Regresy ion ANOVA - Full Model
Source DF S8 MS
Explained q (N=1) (82,) (R3q)
Residual %;g;% (N=-gq=-1] S2%, |.a Séy,.
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The mode! with k independent variables: where k < g is:
Q = a + baXy + ba Xa +...bu Xu (7)

The regression ANOVA tlbl‘ s given In Figure 3.

Figure 8
Regrass ion ANOVA - Subset Model
Source bF 8s MS
Explainaed K (N=1) (83,) (R=,)
Res idual N-k=1 (N=k=11 B2, yxm Szy')l!u
N -1
whare
Sa\/‘xm x N=1 (Szy) (l"Rahx)
Nek=1
(8)
Sy |Xe = N=1 (52,)) (1=R3,)
N~-g=1

Refarring to the Myars format of Cp (equation 4) and
substituting squations (8) for S% ard § 2:

Cp = (k+1) + (83yi1Xu = 83Y|Xg) (N-k=1)
2V

Further substitution [referenca equations (8))] and simple
algebra yield another tormat for the Cp test:

Cp = (N-g=1) (1=-R3,) =~ (N-2k - 2) (®)
(1-R2)

Note that in various forma the Cp test can be expressed as a
tunction of R®, 82y X, N, q, k. This |eade to snother
independent deacision mathod, namely the standard error of
regrassion (Syl X).

4. SyjXw. Whan pertforming step-wism regression, the vaiue of

S3Y1X usually gets smal lear as (ndeperdent var lables aru added :

to regression, Imn other words -
SAYIX. > 83Y | Xuwr (usually). (10)

However, this is not always the case. The ratio is actually

S2Y | Xu. > 1
S3Y I X w1 “ (1)

Note that equation f4) alilowc for cases wheras some subset modael
has lesa var iance (52) than the variance for the complete




mode ! (G =). Im this case the Cp plot is below the | ine

(i.e.; point C in Figure 1). This can be expressed in Figure 4:
Figure 4
A
SVIXM
Minimum value of S,]X. ’/p
\5

| i 17 [ 1

1 2 3 7 3
The minimum vaiue In Figure 4 corresponds to point C in Figure
1. The subaset ot regression that has minimum variasnce would be
the best predictor of the dependent var abie Y. The ratio

desor ibed by sguation (11) can be rewr|tten to gain some insight

to the process. From equations (8) the tollowing expressions
can be Inferred:

S2YIX) = N-1 (8%y) (1=R=.)

Neke=1 (12)
SAY IXpwn = _N=1 (82Y) (1-R%. 1)

Nek=2

The ratioco in inequality (11) now becomas:

§?Y|Xu - (N*k-g) . {1 ="4k (13)
S=Y|XV~1 (N'k’1) 1'Raum1
where N-k-2 < |
N=~k=1
and 1=-R3, > 1
1 "Rah'#‘l

Therefore, the vailue of the ratio citec as inequality (11)

will depand on the magnitudes of the ratios shown above. Note
that equation (3) (Rase.) tontains & snrinkage factor with
terms (1-R2,) and (N-k=1). These terms are aiso contained

in equation (13), Imtuitively it aprears that the adjusted

correlation coetficient (R2a4,) should be a maximum for the
subset of regression where S3Y|X is a minimum. The value of
Cp should also be minimum for the same subset of independent
var lables.

5. Example. The following example wac taken from Myers
(roference 1), lt is found on page 110, Table 4-1. The exampie
uses sales cdata for assphalt shingles obtained from (N=15)
districts. The var iabies consideared Iin this example are:
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accounts.

X1 = Number of promotional

Xz = Number of active accounts,

X2 = Number of competing brands.

Xe = District potential,

Y = Sales in thousanda of dollars,

The results of a step wise regression are

Figure B
Stepwise Results

given be!low:

STEP VAR | ABLE SY | Xu # ADJ R2 P Co *

1 3 48,09 ) Z ;T%Tfﬁ

2 2.3 7 B 11.4

3 1, 2,3 4,98 2061 4 3.4

4 1, 2, 838, & 5,12 . 99580 B B
Notice that the last step (number 4) has a Cp value esqual
(B), This is always true for the full mode!. Also note that
step 3 is the best subset regression, It is this step

(variables X., Xa, Xa,) whare the values of Sy|x and cp
i® maximum,

are minimum and adjusted R23

The reaults of all
The combimation shown
1t

var iable cases
in step

|

s presentad
is the best submset regression,
is the same combination of optimum values of R2ad), Sy|x

arnd Cp (var iables %1, Xa, Xa,).
Figura ©
All Cases
» * *
STEP VARIABLE Sy ! x Ra ADJ R= p.tl Cg
1 1 82.49 .01200 |~-.06400 2 |336
2 2 £E8.683 .B60101 . 46263 2 |16902
3 3 49 .99 , 637286 . 80038 2 |1227.1
a 4 79.08 . 09284 .023086 2 |8085.1
B 1,2 60.863 .609800 42718 3 |166é8.8
-] 1,3 B81.71 . 84160 .58197 3 |1213.9
7 1,4 81.26 11800 |=-.08240 3 [3011.2
8 2,3 6.67 . 904083 .99503 3 11.4
2 2,4 60.82 .50422 42169 3 |1683.1
10 4 48,83 , 88051 62728 | 3 l1081.41
11 1,2,3 4.98 . 09606 00812 4 3.4
12 1,2,4 62.90 .B1305B .3813¢@ 4 |1661.9
18 1,3,4 60.27 . 68050 .80483 4 |1082.4]
14 2,3,4 6.97 .99404 .09241 4 183.34
15 1,2,3,4 .12 .90707 99680 B B |
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in Figure 6,



6. Summary. This paper has examined several methods of
determining when to enter additiona! independant variables into
linear multiple regression in order to form a optimum subset
from all the candidate variabies,.

The interrelationships betwesen Cp, Syix and adjusted R2
are studied., These thraee Indicators appear to provide the same
information in the model selection decision process. Although
they all |ead to the same decision regarding the subset
regression sgselection, each measure provides a different
parception on the subject,.
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TWO-STAGE TESTING OF COMBAT VEHICLE TIRE SYSTEMS |
Barry A. Bodt
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ABSTRACT

An effort is underway to enhance the battlefield survivability of combat vehicle tire sys-
tems. The Army is currently investigating several new tire technologies with regard to their.
ability to function after battlafield degradation. The tires, in a run-flat condition, must sup-
port some vehicle mobility according to that vehicle's mission profile. The immediate objec-
tive of this program is choosing, for further research, the most promising among the new tire
technologies. The presenter has been tasked to develop an appropriate test plan.

Sound experimental strategy, for this or any study, must be accompanied by a clear
understanding of the problem(s) to be resolved. A list of question areas worth exploring to
help gain this understanding is suggested by Hahn (Technometrics, 1984) as part of more
general guidelines. The presenter demonstrates their usefulness to that end in the above
mentioned tire program. The test plan and the process by which it evolved is discussed.




TWO-STAGE TESTING OF COMBAT VEHICLE TIRE SYSTEMS
1. INTRODUCTION

An effort is underway to enhance the battlefield survivability of combat vehicle tire sys-
tems. The impetus for current investigations dates back to a 1979 issue paper, submitted to
DA by the US Training and Doctrine Command (TRADOC). In 1985 the Tank Automotive
Command (TACOM) established a tire task force, the need for which was supported by the
results of a 1984 independent evaluation of one tire system performed by the Operational
Test aﬁd Evaluation Agency (OTEA). OTEA observed that when the run-flat tires for the
High Mobility Multi-Purpose Wheeled Vehicle (HMMWYV) were run flat for 30 miles, the
tires became unserviceable and had to be replaced. The objective of the TACOM Tire Task
Force is to identify a survivable tire system (STS) technological replacement which demon-
strates acceptable battlefield survivability. A two-phase approach (operational and technical)
has been adopted to screen available STS technologies in search of candidates for more
intense reséarch and development. The operational phase, considering the standard and
seven new STS technologies, was completed by the Combat Developments Experimentation
Center (CDEC) in 1987. The technical phase, the focus of this paper, is being conducted by
the Vulnerability Lethality Division (VLD) of the Ballistic Research Laboratory (BRL)
according to the test plan developed by the Probability and Statistics Branch (PSB) of the
Systems Engineering and Concepts Analysis Division (SECAD) of the BRL.

This paper is intended to accomplish two tasks. The first is to discuss the test plan that

has been adopted for the technical testing phase -- not in great detail but sufficiently to

demonstrate the degree to which experimental objectives are satisfied. As part of the discus-




sion it is shown how, for example, tire performance specifications, factors thought to
influence performance, and physical and budgetary constraints are incorporated in the test
strategy., The second is to illustrate the usefulness of well-defined consulting guidelines in
extracting the necessary information from experimenters. Any sound experimental strategy
must be accompanied by a clear understanding of the problem to be resolved, but informa-
tion essential to that understanding is often difficult to obtain. The fragmented manner in
which information is passed from client to consultant inhibits a cogent assimilation of facts
needed for efficient problem solving. Hahn (1984) suggests imposing the structure of ques-
tion area guidelines (see Figure 1) both to help sort the information coming in and to direct

consultation sessions down new promising paths.

The remainder of the paper is organized as follows. In Section 2 the problem and test
plan are developed, punctuated by Hahn’s guidelines. It is hoped that this presentation will
both give fair treatment to the Army concern as well as illustrate a reasonable approach to
consultation. In Secticn 3 a brief critique of the test plan’s strengths and weaknesses is given,

followed by some closing comments.
2. EVALUATION OF THE TEST PLAN

Problem information is divulged in this section according to Hahn's guidelines, and that
constitutes our presentation of his technique. We seek only to show how encompassing those
questinn areas are by developing in full the Army’s problem through their use. In ihe text,
italicized words and phrases refer back to guidelines in Figure 1. The guidelines have been

juggled to allow for a logical presentation and the order shown in Figure 1 corresponds, with

few exceptions, to that of this section. This is simply a matter of convenience and not a claim




1. The objectives of the experiment.

2. The variables to be held constant and how this will
be accomplished (as well as those that are to be
varied).

3. The uncontrolled variables - what they are and
which ones are measurable.

4. The response variables and how they will be meas-
ured.

S. Special considerations which indirectly impose
experimental constraints.

6. The budged size of the experiment and the dead-
lines that must be met.

7. Conditions within the experimental region where the
expected outcome is known; the anticipated perfor-
mance is expected to be inferior, especially for pro-
grams where an optimum is sought; and experimen-
tation is impossible or unsafe,

8. Past test data and, especially, any information about
different types of repeatability.

9, The desirability and opportunities for running the
experiment in stages.

10. The anticipated complexity of the relationship
between the experimental variables and the
response variables and any anticipated interactions.

| 11. The procedures for running a test, including the ease
with which each of the variables can be changed
from one run to the next.

12. The details of the physical set-up.

Figure 1. Important Question Areas for Statisticians to Address.




for an ideal sequence, In fact, each consulting session is likely not only to naturally gravitate
toward different orders but also to move around from area to area, possibly returning several

times to some,
2.1, Understanding the I'roblem

Let us begin by considering objectives. We consider two types; military and experimen-
tal. The military objective is that HMMWYV tires remain serviceable when degraded through
battlefield exposure to small caliber munitions and shell fragments. Serviceable means that
the tire exhibits perforinance consistent with the standards specified in the NATO-Finabel 20
A 5 1956 NATO Test Procedure., Summarized expectations set forth therein say that the
combat tire must possess (as nearly as possible) the same over the road pefformance as the
classic radial tire in terms of maximum vehicle speed and lateral and longitudinal t;action and
stability. After degradation, normal military performance of the vehicle is still required Qhen
no more than two tires (one drive and one steering) are damaged. The experimental objective
is to screen six, including the standard, tire systemns with the purpose of selecting a subset for
further research, development, and the eventual upgrading of combat tires. The selection cri-

teria must he driven by the military objectives surnmarized above,

Question areas 2-4 in Figure 1 each concern varigbles. It is in the identification and
classification of these variables that the experimental strategy begins to take form. In Table 1
the most important ones are given. Care is taken to initially classify them as candidates for
response, design or nuisance variables and to subclassify them for each of the last two
categories. The scale of measurement is also noted. A short definition of eaéh of these vari-

ables is given in the appendix. Because the variables listed in Table 1 represent only those
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considered essential, all must be incorporated in the experirhental strategy. We briefly dis-
cuss several ci them here so that the reader may gain a sense of the complexity of the prob-

lem.

The logical starting point for discussion is with tire technology, for it is the selection
from among these prototypes that is the objective of this experiment. Six manufacturer
offerings, including the standard, are to be considered, but there are basically only four tech-
nologies. When combat tires are exposed to small caliber munitions and shell fragments they
will surely tear, puncture, or in some other way be damaged so as to induce partial or com-
plete deflation, Then in order for military objectives to be satisfied, the survivable tire will
either successfully negate this damage or be structurally capable of supporting vehicle mobil-
ity without benefit of full tire pressure. Taking the first tact, the sealant tire systems contain
chemical compounds which are intended to flow to a source of air loss, solidify, and thereby
negate the threat damage. Run-flats take the second tact and are able to support the vehicle
with a metal or plastic insert which acts in the tires stead when the tire is deflated. Self-
supporting tires are so named because molded into the tread is a rigid fiber glass band,
designed to carry the tire's full load in the absence of tire pressure. Solid urethane tires cir-
cumvent the problem by containing no air to be lost, hut they do so at the cost of additional

weight, inhibiting vehicle mobility (Drelling et al., 1987).

A limitation of the CDEC exercise is that tire degradation from shell fragments is not
considered. Interest in the more irregular pu-: .. 35 and tears caused by the shell fragment
threat is a consideration in involving the BRL in the technical phase of experimentation. To
make inferences about tire performance after fragment damage the consensus is that either

live shells should be detonated near standing tires or the expected resulting fragments shouid

234




be simulated. A special consideration in long range plans is that an acceptance test consistent
with current testing be developed. Due to the repeatability requirements inherent in accep-

tance testing the shell-detonation approach was dropped in favor of fragment simulation

This decision led to variables involving fragment shape, size, and velocity. Due to budget
and time constraints it appears unreasonable to select many values for each and then proceed
in a factorial mnanner when incorporating them in the design. Rather we option to create two
fragment profiles, each representative of a distinct threat. Avoiding great detail, a standard
BRL fragment design is specified for shape. Velocity and mass are determined as follows.
Each are a function of the distance between the shell at detonation and the tire. The distance
selected corresponds to a 50% mobility kill for the vehicle according to models accessed by
the Army Material Systems Analysis Activity (AMSAA), Avoiding the experimental region
where the expected outcome is known, we do not consider distances so close that the personnél
are not likely to survive. The median velocity and mass among computer simulated frag-
ments possessing an appropriate trajectory then serve as representative values for these
characteristics. Trial firings suggest some deviations in these choices so that resulting dam-

age seemed similar to actual fragment damage previously obsetved.

Other factors of keen interest include the terrain traveled and tire position, motion, and
pressure. The mission profile for the HMMWY dictates that it shall be able to travel primary
roads, secondary roads, and cross country, Further it suggests that in a characteristic mission |
those three terrains might comprise 30%, 30%, and 40%, respectively, of the total mileage
covered Tire positicn refers to its designation as a drive tire or a drive and steering tire; the
HMMWYV is 4-wheel drive. In addition to this one-at-a-time damage, recall that the NATO

Finabel standards require acceptable performance when two tires on the vehicle are



damaged. When attacked, the HMMWYV may be moving or at rest. Proponents of the
sealant technology claim that if the tire is in motion when punctured, then the sealant
mechanism will be more effective in finding and repairing the damage. Past test data indi-
cates that tire pressure may influence the type of puncture, that is, clean or ragged. Manufac-

turer recommended high and low pressures for each tire will be considered.

The special consideration that this experiment complement the CDEC exercise fixed two
important test definitions. TACOM decided that the response would remain defined as miles
until failure. Failure occurs when either the tire begins to come apart when in use or the
operator must slow to less than 50% of normal operating speed in order to maintain control.
Under a rigid value for normal speed, failure could depend on the size and strength of the
operator. We propose to account for that by establishing a profile on operators (actually driv-
ing teams) in their normal operation of the vehicle, The 50% rule is then based on normal
team performance. Driving teams are established to avoid failure due to fatigue. Past test
data reveals that some degraded tires remain serviceable after 100 continuous miles of opera-
tion. In order to avoid truncated data, the test course is extended te 125 continuous miles, but
at the additional cost of trial time. It is felt that if two operators are allowed to rotate after

each 25 mile lap, then fatigue will not enter into the failure determination.
2.2 Test Plan

The test plan will be implemented in stages. A fairly large number of experimental con-
ditions define the experiment outlined in Section 2.1, To examine each of these c¢onditions in
a factorial manner will require mote resources than the experiniental budget will allow; for all

but the standard tire no more than 30 prototypes will be made available. Morenver, recall

236




that the principal objective of this study is to facilitate comparison among tires. Placing too
much emphasis (sample allocation) on ancillary issues may partially obscure (weaken conclu-
sions regarding) the main experimental focus. For these reasons, resource limitations and

emphasis, we choose to run the experiment in two primary stages.

The division of testing meets the above concerns. In stage 1 all the experimental condi-
tions are incorporated in the design as factors or fixed test procedures. Only the standard
HMMWYV tire is considered in stage 1. The purpose of this stage is two-fold. First the vari-
ous test conditions may be examined. It is hoped that some will prove unnecessary for inclu-
sion in stage 2, thereby increasing the experimental information per sampled test condition.
Second, test procedures may be smoothed. Field test exercises nearly always present unex-
pected problems, often resulting in samples which must be invalidated for the analysis, Here
we run only the risk of wasting some more plentiful, standard tires instead of the scarce new
prototypes. In stage 2 the prototypes will be examined by an experienced testing group under
the conditions remaining after stage 1. Since the complete details will not be available until
stage 1is concluded, we defer further discussion of stage 2 to future papers. In the remainder

of this paper stage 1 testing serves as the main focus.

Stage 1 will be run as a 1/2 replication of a 4x2* factorial design, requiring 32 observa-
tions, The desigu factors, each discussed in Section 2.1, are listed in Table 2. The 4 levels for
threat include a 7.62mm round fired at 45° and 90° obliquity on the sidewall, 4 small fragment
simulator, and a large fragment simulator. Note that only 2 tire position levcls, drive or steer-
ing, are considered. The case in which two tires are damaged, requiring twice as many sam-
ples, is handled only in a limited sense. Imbedded in the stage 1 factorial design are four

treatment combiuations having two damaged tires which arise from a 1/2 replicate of a 2!
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design. The remaining 4 observations are already included in the principal sfage 1 design.
The other three factors are handled as previously noted, This design allows hypothesis tests
on all main effects and on most first-order interactions. Due to the anticipated complexity of
the relationship among variables some first-order interactions can be sacrificed to the experi-
mental error formed by the remaining second, and above, order interactions. The remaining

variables are addressed in stage 1 as suggested in Figure 2.

Randomization for the stage 1 design is complete except in the case of driving team,
vehicle, and terrain, In consideration of the procedures for running a test and the ease in which
variables can be changed and the details of the physical set up some compromises were made.
The complete randomization of the driving teams is not possible because both teams are to
be used simultaneously, The first driver in the rotation for each team was randomized. As
indicted in Figure 2, four vehicles are used but are not included as test factors, To mitigate
their effect on the outcome, they have been selected according to age and state of repair and
have been partially randomized over the design. Also noted in Figure 2, the three terrains
mentioned in Section 2.1 comprise the test track. The course layout attempts to mix or ran-
domize the terrains so that not all the mileage for one type will be traveled before the next is

encountered,
3. CRITIQUE OF APPROACH

In this section we address the primary advantages and disadvantages of the test plan
interpreted in terms of the stated military and experimental objectives and follow with some
comments pertaining to the consulting technique employed. Beginning with the military

objectives, all of the variables considered important by TACOM or the NATO Finable Stan-
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dards are included in the test plan in a manner suitable to TACOM. Sometimes this requires
compromise, such as in the use of terrain, Terrain is considered only through its inclusion in
the test course in proportions consistent with the HMMWYV mission profile. For some othe:
variables the military interests are clarified in the test plan. For example, normal operating
speeds in the failure definition are mnre sensibly tied to the normal performance of individual
driving teams. Also, efforts to hantls the fragment threat result in a reasonable fragment

simulation procedure which may be used in follow-on acceptance testing.

With regard to experimental objectives, the selection of STS prototypes for further
research and development follows directly from analysis of the second testing stage. Further,
" the stage 1 plan imposes an analyzable design structure on a coniplex problem providing for
the testing of all important hypotheses, In addition, running the experiment in stages has the
emphasis and resource advantages mentioned in Section 2.2, However, the test plan has
several weaknesses. By examining the standard tire only in stage 1, comparisons between it
and other STS prototypes are hindered. Experimental error is an issue since complete ran-
domization is not possible and since some pooling of low-order interactions into the error
term may be necessary. Choice of an error term for the imbedded test of the two-tire effect
is far from straight-forward, particularly since four of the eight observations must be used in
the analysis twice. Finally, we had to take some liberties in the combination of variables to

form factors so that a design would be possible with the available samples.

As to consulting, we cannot prove the usefulness of Hahn's guidelines, but we hope that
the illustration is convincing, Surely, the information can be obtained through cther methods,
but the imposed structure of this approach facilitates a very comprehensive investigation. In

the end, all methods must be judged by the experimental strategies which they help to
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develop, but their performance is hopelessly confounded with the skills of the consultant using
thern. Of course the purposes of those strategies are to meet both application objectives and
satisfy statistical theory, Whether this strategy satisfies those purposes, and if not, whether
fault lies with the consultant, the approach, or the problem are questions left for the reader to

decide.
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terrain

tire position

vehicle

driver

tire motion

threat obliquity

tire technology
fragment shape
fragment size
fragment velocity

road temperature

vehicle load
driving speed

distance to tire

round
miles until failure

delivery method

APPENDIX

the three driving surfaces listed as primary road, secon-
dary road, and cross country. Each will induce different
tire stress and all are included in the vehicle’s mission
profile.

placement of the damaged tires, In testing, the right'
front, right rear, or both may be degraded.

High Mobility Multi-purpose Wheeled Vehicle
(HMMWY). Tbhis vehicle’s tire system is the program'’s
focus. The individual HMMWYV effect is an issue,

operator of the vehicle. The influence of different drivers
should bs accounted for,

the state of the tire, either static or rolling,

m«-_ 90°

six Survivable Tire Systems to be compared.

partially determines the nature of the tear or puncture,
partially determines the nature of the tear or puncture,
partially determines the nature of the tear or puncture.

effects the tire vulnerability. Previous testing revealed
reduced susceptibility to puncture with low tire pressures,

influences tire stress.
Influences tire stress.

refers to distance traveled by fragment or small caliber
munition.

threat munition(s) to be used.
response.

fragment propelling methods considered.
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# shots on tire - the number of punctures to be made in each tire to
obtain its degraded state.

subjective assessments - comments solicited from drivers regarding handling of
vehicle whien tires are in normal or degraded mode.




Parallel Coordinate Densities:

Edward J. Wegman
Center for Computational Statistica
242 Science-Technology Building
George Mason University
Falrfax, VA 22030

1. Iniroduction. The classic scatter diagram is a fundamental tool in the construction of a
model for data. It allows the eys to detect such structures in data as linear or nonlinear features,
clustering, outliers and the like. Unfortunately, scatter diagrams do not generalize readily beyond three
dimensions. For this reason, the problem of visually representing multivaiiate data is a difficult,
largely unsolved one. The principal difficulty, of course, is the fact that while a data vector may be
arbitrarily high dimensional, say n, Cartesian scatter plots may only easily be done in two dimensions
and, with computer graphics and more effort, in three dimensions. Alternative multidimensional
representations have been proposed by several authors including Chernoff (1973), Fienberg (1979),
Cleveland and McGill (1984a) and Carr et al. (1986).

An Important technique based on the use of motion is the computer-based kinematic display
ylelding the illusion of three dimensional scatter diagrams. This technique was pioneered by Friedman
and Tukey (1973) and is now available in commercial software packages (Donohoe's MacSpin and
Velleman'’s Data Desk). Coupled with easy data manipulation, the kinematic display techniques have
spawned the exploitation of such methods as projection pursuit (Friedman and Tukey, 1974) and the
grand tour (Asimov, 1988). Clearly, projection-based techniques lead to important insights concerning
data, Nonetheless, one must be cautious in making inferences about high dimensional data structures
based on projection methods alone. It would be highly desireable to have a simultaneous
representation of all coordinates of a data vector espocially if the representation treated all components
in a similar manner. The cause of the failure of the standard Cartesian coordinate representation is the
requirement for orthogonal coordinate axes. In a 3-dimensional world, it is difficult to represent more
than three orthogonal coordinate axes, We propose to give up the orthogonality requirement and
replace the standard Cartesian axes with a set of n parallel axes,

2. Parallel Coordinates. We propose as a multivariate data analysis tool the following
repressntation. In place of a scheme trying to preserve orthogonality of the n-dimensional coordinato
axes, draw them as parallel. A vector (x,, X5, ... , Xn) ls plotted by plotting x; on axis 1, x; on axis 2
and so on through xn on axis n. The points plotted in this manner are joined by a broken line. Figure
2.1 illustrates two points (one solid, one dashed) plotted in parallel coordinate representation. In this
{llustration, the two points agree in the fourth coordinate. The principal sdvantage of this plotting
device is clear. Each vector (xy, X3, ... , Xn) I8 represented in a planar diagram so that each vector
component has essentially the same representation.

The parallel coordinates proposal has its roots in a number of sources. Griffen (1958) considers
a 2-dimensional parallel coordinate type device as & method for graphically computing the Kendall tau
correlation coefficient. Hartigan (1075) describes the “profiles algorithm” which he describes as
“histograms on cach variable connected between variables by identifying cases.” Although he does not
recommend drawing all proflles, a profile diagram with all profiles plotted is a parallel coordinate plot.
There is however far more muathematical structure, particularly high dimensional structure, to the
parallel coordinate diagramn than Hartigan exploits. Inselberg (1985) originated the parallel coordinate

1This research was sponsored by the Army Research Office, Contract DAAL03-87-K-0087
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representation as a device for computational geometry. His 1985 paper is the culmination of a series of
technical reports dating from 1981, Finally we note that Diaconis and Friedman (1983) discuss the so-
called M and N plots. Their special case of a 1 and 1 plot is a parallel coordinate plot in two
dimensions. Indeed, the 1 and 1 plot is sometimes called a before-and-after plot aud has a much older
history. The fundamental theme of this paper is that the transformation from Cartesian coordinates to
parallel coordinates is a highly structured mathematical transformation, hence, maps mathematical
objects into mathematical objects, Certain of these can be given Lighly useful statistical
interpretations so that this representation becomes a highly useful data analysis tool.

3. Parallel Coordinate Geomeiry. The parallel coordinate representation enjoys some elegant
duality properties with the usual Cartesian orthogonal coordinate representation. Consider a line L in
the Cartesian coordinate plane given by L: y=mx+b and consider two points lying on that line, say
(a, ma-+b) and (¢, me+b). For simplicity of computation we consider the xy Cartesian axes mapped
into the xy parallel axes as described in Figure 3.1, We superimposa a Cartesian coordinate axes t,u on
the xy parallel axes so that the y parallel axis has the equation u=1. The point (a, ma-b) in the xy
Cartesian system maps into the line joining (a, 0) to (ma+b, 1) in the tu coordinate axcs, Similarly,
(¢, me+b) maps into the line joining (¢, 0) to (me+b, 1). It is & straightforward computation to show
that these two lines intersect at a point (in the tu plane) given by I: ( b(1=m)™, (1~m)"!). Notice
that this point in the parallel coordinate plot depends only on m and b the parameters of the original
line in the Cartesian plot. Thus I is the dual of L and we have the interesting duality result that
poiuts in Cartesian coordinates map into lines in parallel coordinates while lines in Cartesian
coordinates map into points in parallel coordinates.

For 0 < (1=m)! < 1, m is negative and the intersection occurs between the parallel
coordinate axes. For mi=~1, the Intersection is exactly midway. A ready statistical interpretation
can be given. For highly negatively correlated pairs, the dual line segments in parallel coordinates will
tend to cross near a single point between the two parallel coordinate axes. The scale of one of the
variables may be transformed in such a way that the intermection occurs midway between the two
parallel coordinate axes in which case the slope of the linear relationship is negative one.

In the case that (1~m)™' <0 or (1—m)™>1, m is positive and the intersection nccurs external
to the region between the two parallel axes. In the special case m=1, this formulation breaks down,
However, it is clear that the point pairs are (a, a+b) and (¢, c+b). The dual lines to these points are
the lines in parallel coordinate space with slope b™! and intercepts ~ab™ and —cb™! respectively. Thus
the duals of these lines in parallel coordinate space are parallel lines with slope b™'. We thus append
the ideal points to the parallel coordinate plane to obtain a projective plane. These parallel lincs
intersect -at the ideal point in direction b™'. In the statistical setting, we have the following
interpretation. For highly positively correlated data, we will tend to have lines not intersecting
between the parallel coordinate axes. By suitable linear rescaling of one of the variables, the lines may
be made approximately parallel in direction with slope b™'. In thiy case the slope of the linvar
relationship between the rescaled variables is one. See Figures 3.2 for an illustration of large positive
and large negative correlations. Of course, nonlinear relationships will not respond to simple linear
rescaling. However, by suitable nonlinear transformations, it should be possible to transform to
linearity. The point-line, line-point duality seen in the transformation from Cartesian to parallel
coordinates extends to conic sections. An instructive computation involves computing in the parallel
coordinate space the image of an ellipse which turns out to be a general hyperbolic form. For purposes
of conserving space we do not provide the details here.

It should be noted, however, that the solution to this computation is not a locus of points, but
a locus of lines, a line conic. The envelope of this line conic is a point conic. In the case of this
computation, the point conic in the original Cartesian coordinate plane is an ellipse, the image in the
parailel coordinate plane is as we have just seen a line hyperbola with a point hyperbola as envelope.
Indeed, it ia true that a conic will always map into a conic and, in particular, an ellipse will always
map into a hyperbola. The converse in not true. Depending on the detalls, a hyperbola may map into
an ellipse, & parabola or another hyperbola. A fuller discussion of projective transformations of conics
is given by Dimsdale (1984). Inselberg (1085) generalizes this notion into parallel coordinates resulting
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in what he calls hstars.

We mentioned the duality beiween points and lines and conics and conica. It is worthwhile to
point ous two other nice dualities. Rotations in Cartesian cocrdinates becorne traaslations in parallel
courdinates and vice vartsa. Perhaps more interesting from a statisticsl poiat of view ia that points of
iuilection in Cartesian space become cusps in parallel coordinate space and vice versa. Thus the
walatively hard-to-detert inflection point property of a function becomes the notably more easy to

detect cusp in the parallel coordinate representation. Inselberg (1985) discusses theme properties in
detail,

4, Further Statistical Inlerpretations. Since ellipses map into hyperbolas, we can have an easy
templa‘e for diagnosing uncor-:lated daia pairs. Consider Figure 3.2. With a completely uncorrelated
data set, wc would expect the 2-dimensional scatter diagram to fill substantially a circumscribing
circle. As illustrated in Figure 3.2, tha parallel coordinate plot would upproximate a figure with a
hyperbolic envelope. As the enrrclation approaches negative ono, the hyperbolic envelope would deepen
so that in the limit wa would have a pencil of lines, what we like to call the croes-over effect. As the
correlation approaches positive one, the hyperbolic envelope would widen with fewer and fewer cross-
overs so that in the limit we would have parallel lines. Thus corre!ation structute can be disgnosed
from the parallel coordinate plot. As nuled earlier, Griffen (1958) used this as & graphical devicu for
computing the Kendali tan, .

Ciffen, in fact, atiributes the graphical device to Holmes (1928) which predates Keudall’s
discussion. 'Lha compututional formula is

r=1-—ﬂ-2-§:ﬁ

where X is the number of intersections resulting by connecting the t:vo rankings of each member by
lines, one ranking having been put in natural order While the original formulation was framad in
terms of ranks for both x and y axes, it is clear that the numbe. of c¢rossings is invariant to any
monotone increaeing transformation of either x or y, the ranks being cne sucl transformation. Bucause
of this scale invariance, une would expecr rank-based statistics to have an intimate relatiouship to
parallel coordinates,

It is clear that if there is a perfect positive linaar relutionskip with no crossings, ther X = 0
and r = 1. Similarly, if there .. a perfect negative linear relationsuip, Figure 3.2 is again appropriate
Zns we have a pencil of lines. Since every line rneets every cther line, the number of intersections is

'2‘ so that
)
l=1—ﬂn—_1)=—1.

It should be further noted that clustering is easily diagnosed using the parallel coor.linate
representation,

So far we have focused primarily on pairwice parallel coordinate relationships. The idea
however is that we can, sc to speak, stack these diagrams and rejresent all n diinensions
simultaneously. Figure 4.1 trus illustrates 6-dimensinnal Gaussian uncorrelated data plotted in
parallel coordinates. A 6-dimensional ellipsoid would have a similar general shape bui with uyperbolas
of different depths. This data is deep ocean acoustic noise and is illustrative of what might be
expected.

Figure 4.2 is illustrative of some data structures one might see in a five-dimensional data sct.
First it should be noted that the plots along any given axis represent dot diagrams (a refinement of the
histograms of Hartigan), hence convey graphically the one-diinensional marginal distributions. In this
illustration, the first axis is meant to have an approximately normal distribution shape while axis two
the shape of the negative of a x?. As discussed ahove, the pairwise compatcisons can be made. Figure




4.2 ijllustrates a number of instances of linear (both negative and positve), nonlinear and cluatering
situations. Indeed, it is clear that there is a 3-dimensional cluster along coordinates 3, 4 and 4.

Consider also the appearance of & mode in parallel coordinates. The mode is, intuitively
speaking, the location of the most intense concentration of probability. Hence, in a sampling situation
it will be the location of the niost intense concentration of observations. Since observations are
represented by broken line segments, the mode in parallel coordinates will be represented by the most
intense bundle of broken line paths in the parallel coordinate diagram. Roughly speaking, we should
look for the miost intense flow through the diagram. In Figure 4.2, such a flow begins near the center
of coordinate axis one and finishes on the left-hand side of axin five.

Figure 4.2 thus illustrates some data analysis {satures of the parallel coordinate representation
including the ability to diagnose one-dimensional features (marginal densities), two-dimensional
features (rorrelations and nonlinear structures), three-dimensional features (clustering) and a five-
dimensional feature (the mode). In the next section of this paper we consider a real data set which will
be illustrative of some additional capabilities.

5. An Auto Data Ezample. We illustrate parallel cooordinates as an expioratory analysis tool
on data about 86 1980 model year automobiles. They consist of price, miles per gallon, gear ratio,
weight and cubic inch displacement. For n = 5, 3 presentations are needed to present all pairwise
nermutations. Figures 5.1, 5.2 and 5.3 are these ihres presentations. In Figure b.1, perhaps the most
striking feature is the cross-over effect evident in the rclationship between gear ratio and weight. This
suggests a negative correlation. Indeed, thia is reasonable since a heavy car would tend to have a large
engine providing couaiderable torque thus requiring a lower gear ratio. Conversely, a light car would
tend to have a small engine providing small amounts of torque thus requiring a higher gear ratio.

Consider as well the relationship between weight and cubic inch displacement. In this diagram
we have a considerable amount of approximate parallelism (relatively few crossings) suggesting positive
correlation, This is a graphic representation ot the fact that big cars tend to have big engines, a fact
most are prepared to believe. Quite striking however is the negative slope going from low weight to
moderate cubic inch displacement. This is clearly an outlier which is unusual in neither variable but in
their joint velationship. The same observation is highlighted in Figure 5.2.

The relationship between miles per gallon and price is also perhaps worthy of comment. The
left-hand side shows an approximate hyperbolic boundary while the right-hand side clearly illustrates
the cross-over effect. 'This suggests for inexpensive cars or poor mileage cars there is relatively little
correlation. However, costly cars almost always get relatively poor mileage while good gas mileage cars
are almost always relatively inexpensive.

Turning to Figure 5.2, the relationship between gear ratio and miles per gallon is inatructive.
This diagram iz suggestive of two classes, Notice that there are a number of obeervations represented
by line segments tilted slightly to the right of vertical (high positive slope) and a somewhat larger
nnmber with a negative slope of about —1. Within each of these two classes we have approximate
parallelism. This suggests that the relationship between gear ratios and miles per gallon is
approximately linecar, a believable conjecture since low gears = big engines = poor mileage while high
gears = small engines = good mileage. What is intriguing, however, is that there seems to be really
two distinct classes of automobiles each exhibiting a linear relationship, but with different linecar
relationships within each class,

Indeed in Figure 5.3, the third permutation, we are able to highlight this separation into twn
classes in a truly 6-dimensional sense. The shaded region in Figure 5.3 describes a class of vehicles with
relatively poor gas mileage, relatively heavy, relatively incxpeusive, relatively large engines and
relatively low gear ratios. Figure 5.4 is a repeat of this graphic but with different shading highlighting
a class of vehicles with relatively good gas mileage, relatively light weight, relatively inexpensive,
relatively small engines and relatively high gear ratios. In 1980, these two characterizations describe
respectively domestic automobiles and imported automobiles.

8. Graphical Extensions of Parallel Coordinate Plots. The basic parallel coordinate idea
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suggests some additional plotting devices. We call these respectively the Paralle: Coordinnte Depsity
Plots, Relative Slope Plots and Color Histograms, These are extensions of the basic idea of parallel
coordinates, but structured to exnloit additional fcatures or to convey certain information more easily.

6.1 Parallel Coodinate Density Plots. While the basic parallel coordinate plot is a useful
device itself, like the conventional scatter diagram, it suffers from heavy overplotilng with large data
sets. In order to get around this problem, we use a parallel coordinate density plot which is computed
as follows. Our algorithm is based on the Scott (1985) notion of average shifted histogram (ASH) but
adapted to the parallel coordinate context. As with an ordinary two dimensional histogram, we decide
on appropriate rectangular bins. ‘A potential difficulty arises bacanse a line segment representing a
point may appear in two or more bins in the same horisontal slice. Obviously if we have k n-
dimensional observations, we would like to form a histogram based on k entries. However, since the
line segment could appear in two or more bins in a horizontal slice, the count for any givea horizontal
slice is at least k and may be bigger. Moreover, every horizontel slice may not have tht same count.
To get around this, we convert line negments to points by intersecting each line seginent with a
horizontal line passing through the middle of the bin. This gives us an exast count of k for esch
horizontal slice. We conatruct an ASH for aach horizontal slice (typically averaging & histograms to
form our ASH). W= have used contours to repzesent the two-dimensional density although gray scale
shading could be used in a display with sufficient bit-plane memory. An example of an parallel
coordinate density plot is given in Figurs 6.1, Parallel condinate deusity plots have tbe advantage of
being graphical representations of data setc which are aimultaneously high dimensional and very large.

8.2 Relative Slope Plots. We have alremly seen that parallel line segments in a parallel
coordinate plot correspond to high positive correlatiou (linear relationship). As in our automobile
example, it is possible for two ot more sets of linear relationships to axist simultaneously., In an
ordinary parallel coordinate plot, we see these as sets of parallel lines with distinct slopes. The work of
Cleveland and McGill (1984b) suggests that comparison of slopes (angles) is a relatively inaccurate
judgement task and that it is much easier to compare magnitudes on the same scaie. The relative
slope plot is motivated by this. In an'n-dimensional relative slope plot there are u—1 parallel axes,
each corresponding to a pair of axes, say x; and x;, with x; regarded as the lower of the two coordinate
axes. For each observation, the slope of the line segment batween the pair of axes is plotted as a
magnitude between —1 and +1, The maximum positive slope is coded as + 1, the minimum negative
slope as —1 and a slope of co as 0. The magnitude is calculated as coe n where » is the angle between
the x; axis and the line segment correspouding to the observation. Each individual observation in the
relative slope plot corresponds to a vertical section through the axis system. An example of a relative
slope plot is given in Figure 6.2, Notice that since slopes are coded as heights, simply laying a
straightedge will allow us to discover sets of iinear relationships within the pair of variables x; and x;.

6.3 Color Histograms. The basic set-up for the culor histogram is similar to the relative slope
plots. For an n-dimensional data set, there are n parallc] axes, A vertical section through the diagram
corresponds to an observation. The idea is to code the magnitude of an observation along & given axis
by a color bin, tae colots being chosen to form a color gradient, We typically choose 8 to 15 colars.
The diagram is drawn by choosing an axis, say x,, and sorting the observatious in ascending order.
Along thiy axis, we see blocks of color arranged according to the color gradient with the width of the
block being proportional to the number of observations falling into the color bin. The observations on
the other axes are arranged in the order corresponding to the x, axis and color coded according to their
magnitude. Of course, if the same color gradient shows up say on the xm axis as on the x,, then we
know x, is positively “correlated” with xm. If the color gradient is reversed, we know tha “correlation”
is negative. We used the phrase “correlation” advisedly since in fact if the color gradient is the same
but the color block sizes are different, the 1elationship is nonlinear. Of course if the xm axis shows
color speckle, there is nc “correlation” and x, is unrelated to xm. An example of a color histogram is
given in Figure 6.3 (for purposes of reproduction here it is really a gray-scale histogram).

7. Implementations and Ezperiences. OQur parallel coordinates data analysis softwure has been
iniplemented in two forms, one a PASCAL program operating on the IBM RT under the AIX
operating systemn. This code allows for up to four simultaneous windows and offers simultancous
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display of parallel coordinates and scatter diagram displays. It offers highlighting, zoorning and other
similar features and also allows the poesibility of nonlinear rescaling of each axis. It incorporates axes
permutations and also includes Parallel Coordinate Density Plots, Relative Slope Plots and Coior
Histograms.

Our second implementation is under development in PASCAL for MS-DOS machines and
includes similar features. In addition, it has a mouse-driven painting capability and can do real-time
rotation of A-dimensional scatterplots. Both programs use EGA graphics standards, with the second
also using VGA or Hercules monochrome standards.

We regard the parsllel coordinate representation as a device complementary to scatterplots, A
major advantage of the parallel coordinate represcntation aver the scatterplot matrix is the linkage
provided by connecting points on the axes. This linkage is difficult to duplicate in the scatterplot
mateix. Because of the projective line-point duality, the structures seen in a scatterplot can also be
seen in a parallel coordinate plot. Moreover, the work of Cleveland and McGill (1984b) suggests that
it is 2asier and more accurate to compare observations on a common scale. The parallel coordinate
plot and the derivatives of it de facto have a common scale and so for example a sense of variability
and central tendency among the variables arc casier to grasp visually in parallel coordinates when
compared with the scatterplot matrix, On the other hand, one might interpret all the ink generated by
the lines as a significant disadvantage of the parallel coordinate plot. Our experience on this is mixed.
Certainly for large data sets on hard copy this is a problem. When viewed on an interactive graphics
screen particularly a high resolution screen, we Lave often found that individual points in a scatterplot
can get lost because they are simply not bright enongh. That does rot huppen in a parallel coordinate
plot. However, If many points are plotted in monochrome, it is hard to distinguish between points.
We have gotten around this problem by plotting distinct .olnts in different colors. In an EGA
implementation, this means 16 colors. This is surprisingly effective in separating points. In one
experiment, we plotted 5000 5-dimensional random vectors using 16 colors, and inspite ol total
overplotting, we were still able to see some structure. In data sets of somewhat smaller scale, we have
implement a scintillation technique. With this technique, when there is overplotting we cause tlLe
screen view to scintillate hetween the colors representing the overplotted poluts. The speed of
scintillation is is proportionul to the numher of points overplotted and by carefuily truzing colors, one
can follow an individual point through the entire diagram.

We have found painting to be an extraordinarily effective technique in paiallel coordinates.
\We have a painting scheme that not only paints all lines withia a given rectangular area, but also all
line lying between to slope constraints. This is very effective in sepurating clusters. We also use
invisible paint to eliminate observation points from the data set tempocarily. 'This is a natural way of
doing a subset selection.
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Figure 4.1b Parallel coordinate plot of 6 channel sonar data.
The data is uncorrelated Gaussian polse. The second
somewhat different mean. Notice the approximate hyperbolic

Figure 4.1a Parallel coordinate plot of a circle.

coordinate represents a relativaly remote hydrophone and has &
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Plgure4 .2 A five dimensional scatter diagram in parallel
coordinates illustrating marginal densities, correlatious, three
dimensional clustering ud a five dimensional mode.
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Figure 6.1 Parallel coordinate density plot of 5000 uniform
random variables. This plot has five contour
levels 5%’ %%, 50 %' 78% and 95%-

Figure 6.3 Color histogram of 13 dimensional antomobile'dnta.
This plot is show in grey scale for purposes of reproduction.
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Abstract

Discrete-event simulation is one of the most important techniques available for study-
ing complex stochastic systems. In this paper we review the principal methods available
for analyzing both the trausient and steady-state simulation problems in sequential and
parallel computing environments. Next we discuss several of the variance reduction meth-
ods designed to make simulations run more efficiently. Finally, a short discussion is given

of the methods available to study system optimization using simulation.

Keywords: stochastic simulation, output anslysis, variance reduction, parallel computa.

tion, and system optimization.




1. Introduction.

Computer simulation of complex stochastic syste:ms is an important technique for
evaluating system performance. The startiug point for this method is to forranlate the
time varying behavior of the system as ¢ basic stochestic process Y = {Y(¢) : ¢ 2 0},
where Y(-) may be vector-valued. [Discrete time processes cau tlso be handled.] Next
a computer program is written to generate sample reslizations of Y. Simulation output
is then obtained by running this program. Our discussion in this paper is centered on
the analysis of this simulation output. The goal being to develop sound probabilistic and
statistical methods for estimating systera performance.

Two principal problems arise: the transient simulation problem and the steady-state
simulation problem. Let T' denote » stopping t'me and X @ a{Y(t): 0 <t < T}, where &
is a given real-vulued function. The transient problem is to estimate a & E{X}. Examples

of a include the following:

o = B{f(Y (),
B {7 [ frnas),

a m P{Y does not enter A before t5}.

and

Here tg is & fixed time (> J), f is a given renl-valued function, and A is & given subset of
the state-space of Y. The transieut problem is relevant for systems running for a limited
(but possibly random) length of time that caanot be expected to reach a steady-state. Our
goal here is to provide both point and interval estimates for a.

For the steady-state problem we assume the Y process is asymptotically stationary
in the sense that ‘

;| ¥ @s o

as £ — o00. Here =» denotes weak convergence and f is a given real valued function
defined on the state-space of Y. ‘The easiest example to think about herv is an irreducible,
positive recurrent, continuous time Markov chain. In this case Y(¢) = Y as t — oo and

a = E{f(Y)}. Examples of a in this case include the following:
a = E{Y"} (when Y is rcal-valued),
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a=P(Y € A},
and

a = B{«(Y)},

where c is & given cost function. Again as in the transient case, we wish to construct both

point and interval estimates for a.

2. Transient Problem,

Assume we have a computational budget of ¢ time units with which to simulate the
process Y and estimate o & E{X}, as defined in Section 1. In a sequential computing
environment we would generate independent, identically distributed (iid) copies

(Xlofl)’(xh'rz)v'”a

where the X;'s are copies of X and 7; is the computer time required to generate X;. Let
N(t) denote the number of copies of X generated in time ¢; this is just the renewal process
associated with the iid 7's. A natural point estimator for ~'is
N(1)
Zyo e { WO ; X, N(#)>0
0 , N(t)=0,
The standard asymptotic results for Xn(,) are the strong law of large numbers (SLLN)
and the central limit theorem (CLT).

STRONG LAW OF LARGE NUMBERS., If £{r,} < 00 and E{| X |} < oo, then

XN = aa.s. ast = oo

CENTRAL LIMIT THEOREM. If E{r} < o and var{X;} < oo, then
V3[R y(y) = a] > (E{r} - var{X,})}/2. N(0,1),

where N(0,1) is a mean zero, variance one normal random variable, The SLLN follows
from the SLLN for iid summands and the SLIN for renewal processes. The CLT result
can be found in BILLINGSLEY (1968), Section 17.
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From the SLLN we see that X () is a strongly consistent point estimator for a. Thus
for large ¢ we would use X () a8 our point estimate. On the other hand, the CLT can be
used in the standard manner to construct a confidence interval for a. Here the constant
E{r )} var{X;} appearing in the CLT would have to be estimated.

Suppose now that we are in a parallel computing environment with p independent
processors, Now we wish to estimate a for a fixed ¢t as p — oo, On the p processors we
generate iid copies of (X, 7):

(X )y (Xazyma) oo (Ximgey Tivn)
(xﬁhrﬂ)v(xﬂpfﬂ) AR (XQNg(t)’rMh(t))

(xph"pl)o (sz,fps) TR (xpN,(t)a Tp.N,(t))°
A number of estimators have been proposed for estimating a = E{X}. The most natural
estimator to consider first is that obtained by averaging the realizations of X across each

processor and then averaging these sample means. This leads to

ar(pt) = = me(g)o

i-l

where
Ni(t)

20, w | W 2 X Ni(R) >0

jm1

0 , Ni(t) =0.
Here the processing ends on all processors at time T = ¢, If E{r;} < o0 and E{| X |} < o,
then for allt > 0

ay(pt) = E{X N} = E{X - 1(rg}} a.s.
as p — oo, Here 1, is the indicator function of the set A. Unfortunately, E{X} #

E{X -1(r<1)} and 0 a;(p, ) is not strongly consistent for a as p — oo.
The next estimator for a was proposed by HEIDELBERGER (1987). For this esti-
mator we let all processors complete the replication in process at time ¢. The estimator

is
p Ni(t)+1

> 2 X

0-1 =

Z[N (¥) + 11

im]

az(p,t) =
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Here all processurs complete by time

I, = lxgg,[ru +Ta+ o+ nM(t)-n]-
Unfortunately, Tp — +00 a.s. a8 p ~+ 0o, However, aj(p,t) is strongly consistent for a.

To see this, note that if £{| X |} < co and P{r >0} > 0, then as p — ©

Ni(t)+1
[E]
= = B{X}

Pt~ FNHD
The equality about is simply Wald's equation. Finally, since a3(p,t) is a ratio estimator,
a CLT is also available from which a confldence interval can be constructed.
The last estimator we consider was proposed by HEIDELBERGER and GLYNN
(1987). Here we set

a.s.

1 o)
ay(pyt) m = ZXMU)’
p&-l
where

{ {
X,‘v}m = X’V‘)(l) + Xalir>e)

Given N(t) 2 1, Heidelberger and Glynn show that the paitl of random variables (X, ),
ooy (X'N(t)) TN(1)) are exchangeable. Using this fact, they prove that E{X}J‘)w} = E{X,}.
Since the X }j"m'. are iid, we see that ay(t) is strongly consistent for a = E{X,}. Since
the summands in as(p,t) are iid, the standard CLT holds (under appropriate variance
assumptions) and can be used to develop a confldence interval for a. Note that the
definition of X ﬁ‘)m requires the ith processor to complete the replication in process at
time ¢, if no observations have been completed by time ¢; i.e., 73 > ¢. Thus the completion

time for all p processors is given by

T,= ltgygcp{mmc(t.ru)}-

While T, — 00 a.s. a8 p = oo (if P{ri; > t} > 0), T, goes to infinity at a much slower
rate than is the case for ay(p,t). They also show that the following CLT holds:

13Xy = a) = ¢EY3{r} N(0,1)
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as t — 00, whefe we assume 0 < ¢? = var{X,;} < co and 0 < E{r} < co. Thus Xy
can also be used in a sequential environment to estimate a.

3. Steady-State Problem.

The steady-state estimation problem is considerably more dificult than the transient °
estimation problem. This difficulty stems from the following considerations: (i) need to
estimate long-run system behavior from a finite length simulation run; (ii) an initial bias
(or transient) usually is present since the process being simulated is non-stationary; and
(iii) strong autocorrelations are usually present in the process being simulated. While
classical statistical methods can often be used for the transient estimation problem, these
methods generally fail for the steady-state estimation problem for the reasons mentioned
above,

Assume our simulation output process is Y = {Y(¢) : ¢ > 0} and for a given real-
valued function f

a(t) m -} /o 'Y ())ds = a | (1)

As stated above, we wish to construct point and interval estimators for a. In addition to

(1), many methcds also assume that a positive constant ¢ exists such that the following
CLT holds:

Vila(t) - o] » o+ N(0,1) (2)

as t — oo, From (1) and (2) we can construct a point estimate and confidence interval for
a provided we can estimate o, Estimating o is generally the hardest problem.

A variety of methods have been de\-loped to address the steady-state estimation
problem. In Figure 1 we have given a break-down of these metliods. Most of the methods
are single replicate methods, since multiple replicate methods tend to be ineficient because
of the initial bias problem.

Here we only consider single replicate methods. These methods are of two types:
those that consistently estimate o and those in which o is cancelled out.

For consistent estimation of o, we need a process {s(t) : ¢t > 0} such that s(t) = o.
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In which case (2) leads to a 100(1 — §) % conficcace interval for a given by
[a(t) = 2(1 = 6/2)s()/4*/%, a(t) + 2(1 = §/2)a(t)/£"/%),

where &(2(1 - §/2)) = 1 - 6/2 and @ is the standard normal distribution function.
On the other hand, the canceling out methods require a non-vanishing process {Z(t) :
t >0} such that
[£}/3(a(t) ~ a), Z(2)] =» [¢N(0,1),02]

as t — oo, Then using the continuous mapping theorem (cf., BILLINGSLEY (1968), p
30) we have
t1/%(a(t) ~ a)/2(t) = N(0,1)/2 (3)

as ¢ = oo, Note from (3) that & has been cancelled out in a manner reminiscent of the
t-statisiic,

First we discuss one of tne metl;odl in which « is consistently estimated, namely,
the regenerative method; see IGLEHART (1978) for a discussion of this method plus
other background material. Here we assume that the simulation output process Y is a
regenerative process. We are given a real-valued function f and wish to estimate a(f) =
E{f(Y)}, where Y(t) » Y as ¢t — co. Again it is convenient to think of Y as an
irreducible, positive recurrent, continuous time Markov chain. Let T(0) = 0,7, T;,... be
the regeneration times for Y and set 7y = T; — Ti—;,s 2 1. The 7;'s are the lengths of
the regenerative cycles. Next deflne the areas under the Y process in the kth regenerative
cycle by

)

Yi(f) m 1Y (s)lds

L/ T Y
The following basic facts provide the foundation for the regenerative method:

(i) the pairs {(Ya(f),7a): k 2 1} are iid;

(ii) if B{] f(Y) |} < 0o, then a(f) = E{Y1(f)}/E{n}.
The regenerative method can be developed on either the intrinsic time scals (t) or on the
random time scale (n) corresponding to the number of regenerative cycles simulated. On

the intrinsic time scale our point estimate for a is given by

alt,f) = / F(¥(s))ds,
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where ¢ is the length of time the simulation is run. On the random time scale our point is
given by
an(f) = ?n(f)/'rm

where ¥(f) (respectively, #,) is the sample mean of Yi(f), ..., Ya(f) (1,1 Tn). Here the
Y process is simulated to the completion of n regenerative cycles. Using the basic facts
(i) and (ii) above, it can be shown that both a(?, f) and an(f) are strongly consistent for
a(f) as t and n respectively tend to infinity. Next we define Z, = Y,(f) - a(f)r) and
assume that var{Z,} = 0® < oo, Then it can be shown that the following two CLT's hold

as t — oo and n = oo:
t3(a(t, f) = a(f)] = (¢/B*?{n})N(0, 1),

and |
n 3 an(f) = o(f)] > (¢/B{r })N(0,1).

These two CLT"s can then be used to construct confidence intervals for a( f) provided both °
o? and E{7} can be estimated. The mean E{} iz - ily estimated by #, and o can be
estimated from its deflnition in terms of ¥)(f) and 7.

Next we turn to a discussion of the principal method available for canceling out o.
This is the method of standardized time serics developed by SCHRUBEN (1983). Our
discussion is based on the paper GLYNN and IGLEHART (1989) and uses some results
from weak convergence theory; see BILLINGSLEY (1968) for background on this theory.
From our output process Y we form the random elements of C[0, 1), the space of real-valued

continuous functions on the interval (0, 1], given by
1 nt
P.(t)m & / Y(s)ds
n Jo

and
Xa(t) m n}/3[P,(2) - at),

where 0 € ¢t < 1 and n 2 1. Now we make the basic assumption that a finite, positive
constant o exists such that

Xn=>0B as n— 0, (4)
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where B is standard Brownian motion, This assumption holds for a wide class of output
processes. To find the scaling process {Z(t) : ¢t > 0} consider the clasa M of functions
g:C[0,1] -+ IR such that
(i) g(az) = ag(z) for all @ > 0 and z € C[0, 1);
(ii) g(B) > 0 with probability one;
(iii) g(z + Bk) m g(z) for all real # and z € C[0, 1], where k(t) = ¢;
(iv) P{B € D(g)} = 0, whare D(g) is the set of discontinuities of g.

The process 20t
n(t - at \
Snt F ' S*S '
2 =gp o 0SS!

is called a standardized time series. Using weak convergence arguments it is sasy to shew
from (4) that

Sa(1) = B(1)/9(B) (8)

as n — oco. Unfolding this CLT we have the following 100(1 ~ §)% confidence interval for
a:

[Pa(1) = 2(1 = 6/2)g(¥n), Ya(1) + 2(6/2)9(Pn)),

where P{B(1)/9(B) € z2(a)} = a for 0 £ a £ 1. Thus each g € M gives rise to a
confldence interval for a provided we can find the distribution of B(1)/g(B). Fortunately,
this can be done for a number of interesting g functions.

One of the g functions leads to the batch means method, perhaps the most popular
method for steady-state simulation. We conclude our discussion of the method of stan-
dardized time series by displaying this special g function. To this end we flrst define the
Brownian bridge mapping I' : C[0,1] - C[0,1] as

(Tz)(¢t) = 2(t) - t2(1), z€C[0,1], 0<t<]

Now think of partitioning our original output process ¥ into m 2 2 intervals of equal
length and define the mapping b, : C[0,1) - R by

1/2

bo(2) = [(m—'“_—T) S ati/m) = oG = V/m)?|

im]
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for z € C[0,1]. Finally, the g function of interest is gm = bmo'. Tosee that gy, corresponds
to the batch means method we observe that

471/3

tm(Fn) mm ™2 | =t 3 (Z‘(") > ZJ‘(")) '

im} Jjml

where

in/m
Zi(n) = /( Y(2)dz/(n/m)

i=1in/m
is the ith batch mean of the process {Y(¢) : 0 £ ¢ < n}. Specializing (5) to the function

gm we see that

(L 3" 2in) = ol /gm(Pa) = tmos

jmm]
as n — oo, where ¢y, is & Student's-t random variable with m — 1 degrees of freedom.
This follows from the fact that B(1)/gm(B) is distributed as ¢,,—; since B has independent
normal increments. For other examples of functions g € M for which the distribution of
B(1)/g(B) is known see GLYNN and IGLEHART (1989). |

4. Variance Reduction Techniques.

Once a basic method is developed to produce point estimates and confidence inter-
vals for a parameter of interest, we turn our attention to making these methods more
efficient. Over the years a dozen or more techniques have been proposed to improve sim-
ulation efficiency. Good references for many of these techniques are BRATLEY, FOX,
and SCHRAGE (1987), WILSON (1984). Here we huve elected to outline three of these
techniques.

As we have seen in Sections 2 and 3, confldence intervals for parameters being es-
timated are generally constructed from an associated CLT. Each CLT has an intrinsic
variance constant, say, 0, The idea for many variance reduction techniques (VRT’s) is to
modify the original estimate in such a way as to yield a new CLT with a variance constant
03 < o}. This will, of course, lead to confidence intervals of shorter length, or alterna-

tively, confidence intervals of the same length from a shorter simulation run. Frequently
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VRT's are based on some analytic knowledge or structural properties of the process being
simulated.

The first VRT we discuss is known as importance sampling. This idea was first
developed in conjunction with the estimation of E{h(X)} ® «, where A is a known real-
valued function and X o random variable with density, say, f. Instead of sampling X from
f, we sample X from a density g which has been selected to be large in the regions that
are “most important”, namely, where |f| is largest. Then we estimate a by the sample
mean of A(X)f(X)/9(X); see HAMMERSLEY and HANDSCOMB (1964).

This same basic ides can be carried forward to the estimation of parameters associated
with stochastic processes. We generate the process with a new probabilistic structure and
estimate a modifled purameter to produce an estimate of the original quantity of interest.
The example we consider here is the M/M/1 queue with arrival rate A, service rate 4,
and trafBic intensity p ® A\/u < 1. Let V denote the stationary virtual waiting time and
consider estimating the quantity o m P{V > u} for large u. When p is less than one, the
virtual waiting time process has a negative drift and an impenetrable barrier at zero. Thus
the chance of the process getting above a large u is small, and & long simulation would be
required to accurately estimate o, The idea used here in importance sampling is to generate
a so-called conjugate process obtained by reversing the roles of A and 4. For the conjugate
process the traffic intensity is greater than one, and the estimation problem becomes much
easier. ASMUSSEN (1985) reports efficiency increases on the order of a factor of 3 to a
factor of 400 over straight regenerative simulation depending on the values of p and u. In
general, importance sampling can yield very significant variance reductions. Further work
along these lines can be found in SIEGMUND (1976), GLYNN and IGLEHART (1989),
SHAHABUDDIN et al. (1988), and WALRAND (1987).

The second VRT we discuss is known as indirect estimation. Assume we are interested
in estimating o @ E{X}, but happen to know that E{Y} = aE{X} + b where a and b are
known. Sometimes it happens that a CLT associated with the estimation of E{Y'} will have
a smaller variance constant associated with it than does the CLT for estimating £{X}. In
this case we would prefer to estimate E{Y} and we use the afine transformation above to

yield an estimate for E{X}. This idea has proved to be useful in queuing simulations where
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the affine transformation is a result of Little's Law. In genéra.l, variance reductions realized
using this method are not dramatic, being usually less than a factor of 2. For further
results along these lines, see LAW (1975) and GLYNN and WHITT (1986). While the
affine transformation works in queuing theory, it is conceivable that other transformations
might arise in different contexts,

" The third and final VRT we discuss here is known as discrete time conversion. Suppose
that X = {X(¢) : ¢t 2 0} is an irreducible, positive recurrent, continuous tirme Markov
chain (CTMC). Then X(t) = X as t — co and we may be interested in estimating
a = E{f(X)}, where f is a given real-valued function. As we have discussed above, the
regenerative method can be used to estimate a. A CTMC has two sources of randomness:
the embedded discrete time jump chain and the exponential holding times in the successive
states visited. The discrete time conversion method eliminates the randomness due to the
holding times by replacing them by their expected values. It has been shown that this
leads to a variance reduction when estimating a. Also, as an added side benefit computer
time is saved since the exponential holding times no longer need to be generated. Gains in
efficiency for this method can be substantial. Further discussion of this idea can be found
in HORDIJK, IGLERART, and SCHASSBERGER. (1976), and FOX and GLYNN (1986).

5. System Optimization Using Simulation.

Consider a family of stochastic systems indexed by a parameter @ (perhaps vector-
valued). Suppose a(8) is our performance criterion for system 8. QOur concern here is to find
that system, say 8y, which optimizes the value of a. For a complex system it is frequently
impossible to evaluate ~ analytically. Simulation may be the most attractive alternative.
We could naively simulate the systems at a sequence of parameter settings 6,,8;, .-, 6,
and select setting that optimizes a(f;). In general this would not be very efficient, since
k would have to be quite large. A better way would be to estimate the gradient of a and
use this estimate to establish a search direction. Then stochastic approximation and ideas
from non-linear programming could be used to optimize a.

T o general methods have been proposed to estimate gradients: the likelihood ratio

method and the infinitesimal perturbation method. We will discuss both methods briefly.




Suppose X = {X, : n 2 0} is a discrete time Markov chain (DTMC) and that the cost of
running system @ for n + 1 steps is g(9, Xy,...,X,). The expected cost of running system
6 is then given by

a(0) = Ee{g(6, Xo,...,Xn)}, (6)

where E is expectation relative to the probability measure P(9) aszociated with system 4.
If E¢{} were independent of 8, we would sioply simulate iid replicates of
Vg(8,Xo,...,Xn). By introducing the likelihood function L(8,Xo,...,Xn) it is possi-
ble to write a(9) as

0(9) = E‘o{g(oi XO, e ,x”)L(o, Xo, e ’xn)}
for a fixed value of 8. Then we can write
Va(6) = Ee,{Vg(6, X0, Xn)L(8) X0, Xn)},

where the interchange of V and Ey, must be justified. A similar approach can be developed
to estimate the gradient of a performance criterion for a steady-state simulation. For an
overview of this approach see GLYNN (1987), and REIMAN and WEISS (1986).

The second method which has been proposed for estimating gradients is called the
infinitesimal perturbation analysis (IPA) method. In this method a derivative, with respect
to an input parameter, of a simulation sample path is computed. For example, we might
be interested in estimating the mean stationary waiting time for a queueing system as well
as ita derivative with respect to the mean service time. Since we are taking a derivative
of the sample path inside an expectation operator, the interchange of expectation and
differentiation must be justified in order to produce an estimate for the gradient Va(6),
say. The [PA method assumes that if the change in the input parameter, 6, is small
enough, then the times at which events occur get shifted slightly, but their order does
not change. It has been shown that the IPA method yields strongly consistent estimates
for the performance gradient in a variety of queueing contexts; see HEIDELBERGER,
CAO, ZAZANIS, and SURI (1988) for details on the [PA method &l.ld a listing of queueing

problems for which the technique works.
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Bayesian Inference for
Weibull Quantiles
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The posterior distribution of a two paramete:. Weibull
quantile for a noninformative pricr may be obtained exactly
(Bogdanoff and Pierce, 1973), although the necessary
numezical integration detracts from the usefulness of this
result. Credible intervals for this postsrior have an
alternative fregquentist interpretation in terms of
conditional tolerance limits (Lawless, 1975).

An approximation to the Lawless procedure was proposed by
DiCiccio (1987). This approximation does not invelve
nunerical integration and is of order O (n"’z); apparently
it is adequate even for samples as small as ten.

The focus of this paper is on the use of DiCiccio's
result for the routine calculation of Weibull gquantile
posteriors. Even a nonbayesian may £ind the posterior cdf's
useful since they provide an easy graphical means for
obtaining accurate tolerance limits.

Examples from strength data for composite materials are
presented and a specific application of importance to
aircraft design is discussed.
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1. Intxoduction

The Weibull model is widely used to represent failure data in engin-
eering applications, One reason is becauss the Welbull distribution is the
limiting diatribution of the suitably normalized minimum of a sample of
positive iid random variables under quite general conditions (Barlow and
Proschan, 1975, ch. 6). The model is therefore appropriate for the strength
of a system composed of a string of many links where the strength of the
links are 1id and the system fails vhen the weakast link fails (Bury, 1975,
ch, 16). An example of a physical system which can be modeled in this way
is the strength of a brittle fiber in tension. Another reason why the
Weibull model is used is that the distribution is very flexible and con-
sequently it often fits data well,

Inference for the Welbull distribution (or, equivalently, for the
sxtreme value distribution, which is the distribution of the logarithm of a
Weibull random variable) is complicated by the fact that the Wuipull is not
in the exponential family, and consequently the minimal sufficient sta-
tistics are the entire sample. Also, although MLE's are easily obtained
iteratively, the distributions of the MLE’'s and pivotals based on the MLE's
can not be obtained in closed form. The same is true of linear estimators
of the Weibull parameters.

At least three approaches to Weibull inference have been taken. The
first is to tabulate approximate quantiles of the pivotals obtained by Monte
Carlo. From these tables one can obtain confidence intervals on parameters
as vell as confidence intervals on quantiles (tolerance limits) for complete
samples (Thoman, Bain and Antle 1969, 1970). A problem arises for incom-
plete samples, since tables must be prepared by simulation for each censor-
ing configuration. The tables which have been prepared (Billman, Antle and
Bain, 1972) are inadequate. A second appraoch i{s to approximate the dis-
tribution of the pivotals (e.g. Lavless and Mann, 1976). These approxima-
tions are empirical and consequently they are not very satisfactory from -
theoretical point of view.




Finally we reach the third approach, which is the focus of this paper.
For any location-scale family (e.g. the extreme value family) and any equiv-
ariant estinators of the parameters (e.g. MLE's) the distribution of certain
pivotals can by obtaioned exactly if one conditions on the ancillary sta-
tistics, From these pivotals one can get exact conditional confidence
bounds and tolerance limits for any sample size. The method is applicable
to both complete and Type II censored samples (i.e., samples for which only
the r smallest order statistics are observed) and requires no tables.
Since the intervals have exact conditional confidence, it follows that they
are also exact unconditionally. In addition, this method has the advantage
of making use of all of the information with respect to the parameters which
is in the data (the parameter estimates are in general not sufficient
statistics), though for the Weibull model this does not appear to be a
practical concern (Lawless, 1973). This conditional approach is apparently
dus to Lawless, who introduced it in (Lawless 1972). An exposition of the
procedure appears in (Lawless, 1982), which is also usaful as a guide to the
literature.

If one choses an appropriate noninformative prior distribution for the
parameters of a location-scale family, then the posterior distribution
either of the paramaters or of a quantile conditional on the ancillaries are
formally identical to frequentist confidence and one-sided tolerance limits
respectively.

Bayesian and frequentist terminology may thus be interchanged freely
and I will do so {n this paper. This is particularly valuable when
discussing tolerance limits, which have a frequentist interpretation which
is difficult for nonstatisticians to understand. A posterior cdf of a
quantile, however, is immediately understood intuitively. Such a cdf can by
used to obtain graphically arbitrary one sided and approximate two sided
conditional tolerarnce limits since for the cases discussed herein these

intervals coincidn with noninformative prior Bayesian credible intervals.

The main disadvantage of rhis conditional approach is that it {s com-

putationally intensive. Many numerical integrations must be performed for




sach dataset as one iteratively approximates the confidence limit.

One goal of this project has been to implement the Lawless procedure
for the extreme value distribution in a ‘robust’ FORTRAN program which can
be used with little user interaction. Another goal has been to investigate
a vecent approximation to the conditional ptoéoduro (DiCiccio, 1987) which
is accurate to 0’(n""). This approximation makes the the caleulation of
posterior distributions feasible, A FORTRAN program to calculate and plot
the posterior distribution of Weibull quantiles which makes use of the
DiCiceclo result is discussed. The results of a suall simulation to assess
the accuracy of the approximation are presented, though little effort was
spent on the simulation since the order of convergence in probability has
been determined.

2. The Weibull Distributiocp
The cdf of the Woibull distribution is
“(x /8)°
F(x;, a, ) = 1 -a
wvhere § is a scale parameter and a a shape paramater. Maximum likelihood

sstimation {s straightforward. The following equation is solved by Newton-
Raphson for a:

(' x,® log x,) (" x,*)"! -1/a = 1/r I log x,

whare X, $x, 5 .,..% X, are the order atatistics, n 2 r is the sample

2
size, and

" 13
Z v - 2 Wi +(n -x) W, .
i=1

A FORTRAN subroutine 'WEIMLE’' for performing these calculations is given in
the appendix.




2. The Extreme Yalue Distribution

Lat X be digtributed Weibull with shape @ and scale 8. The distribu.
tion of )

Y = log(X)
is
H(y: w, b) = G((y-ui/b) = exp (-exp ((y-u) /b))
vhare
b=1l/¢ and u = log 8
ars scele and location parameters respectively, fho location-scale family
H(y; u, b) is called the extreme value distribution. Results for the

extreme value distribution are easily interpreted in terms of the Weibull
distribution, and vice versa.

4. Condicional Inference fox location-Scale Familias

The presentation below follows Lavwlass (1982). The distribution H(y;
u, b) is taken to be the extreme value distribution as in the previous
section. The parameter estimates 4 and ﬁ may be taken to be MLE's, but the
results hold for any equivariant estimators -- that is any statistics U and
B which satisfy

\-l(d)’,'*c. s ey d)',+¢> - d G(y10 L | yg) +c
Bdy,+c, ..., dy +e) = a B(y,, ..., ¥

for any ¢ and any d > 0. The maximum l{kelihood estimates are readily seen
to be equivariant,
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Let the sample size be n and, to allow for Type 1l censoring, let r < n
be the number of data values. Denote the density of G(') by

G'((y-u) /b) = 1/b g((y-u) /b)
First we demonstrate that the following random variables are pivetal; that

is they have probability distributions vhich do not depend on the
parameters:

2, = @ew) /b Z,=b /b 2, = (3w /b,

Let y, 1 s r be the order statistics of a random sample from H(y). Consider
the random variables

v, = (y,-w) /A
The w, are the order statistics of a random sample from G(') and hence are

obviously pivotal., Since the estimator u is assumed to be squivariant we
have that

W, s oy W) = U((Y, eW/B, ey (3, eu)/b) =
1/6 (a(y,s ovy ¥,) -u) = (U-u)/b = 2,
Hence 2, is pivotal. Similarly, Z, is a pivot since

B(v,, +ovy W) = B, W/B, Loty (Y, u)/b) -
b(?;- ey yg) /b -zz

Finally,
Z, = (Gew)/b = ((Gou)/b) (b/D) = 2,/2,

The quantities a, = (xL-G)/S ars immediately seen to be ancillary since
the (a,) are a random sample from G('), where G(') is a completely known

distribution. Only r-2 of these ancillary statistics are independent since




G(.,. cery 8) = (G(y‘. eean y,) -ﬁ)/ﬁ -0

Blay, vooy &) = By, ceiy 7,0/ = L

The fundamental result upon vhich conditional inference from a frequen-
tist perspsctive is based is that the joint pdf of (Z,, Z,, a,, ..., a,,;)
is of the form

1
h(z,, z,, &) = k(a, £, n) 2,°°} (AH gla, + 2,%,)) [ G(az, +2,2))"°F
i1

. only. The pdf of (2,
2g) given a is of the same form as h above except that the normalizing con-
stant is different.

vhere k(a, r, n) is a functionof a,, a,, ..., a

The proof is stralghtforwvard. Begin with the joint pdf of (yy, ...,
ye) and make the change of variables

y, =ba + u.

The Jacoblan of this transformation is a constant given a. A second change
of variables

A A

U=2 b+u=D0bZ22 +u
A
b= zab

gives the desired result,

287




2. Confidence Intervals for Extreme Value OQuantiles

Using ths pivotal density derived in the previous section, it is not
difficult to obtain exact confidence 1ncorvnlg on quantiles of the extreme
valus (or equivalently, the Weibull) distribution. Toward this end, we
deternine the distribution for the scale parameter pivotal Z,. This result
is of interest in it's own right since it leads to confidence intervals on
the extrems value scale (or Weibull shape) parameter. To get the density of
Z,, merely integrate out 2, from the joint pdf given in the previous
section, giving

h(z, |a) = k(a) exp (Ia,z,) 2,°"! /(2" exp (a,2,)])".
Next, make the change of variables

2P - 2, -w’/zz and Z2 -.ZI

where
v, = In (-1n (1l-p)).

The joint density of Z, and Zp is

1

£(z,, z,| a) * 2,°"" oxp (I (a;z, + 2,2, + V)

* exp (-I' oxp (a,z, + 2,2, + wp)).

The cdf of Zp can be expressed in terms of the density of ZP and 2, as

L t
P(Z, S t) = Jdz, [ dz, £(z,, z,| &).
) o 0

Change variables again, this time letting

y = exp (2,2, +w) I' exp (a,z,) and z, = z,.
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The double integral can now be written as a single integral by recognizing
that the integral over y is the incomplete gamma function:

.

P(2, s t) = [ dz; h(z, |a) I(exp (tz, + v.) T"exp (a2,), ¥)
0

vhere

[ ]
I(s, £) = (1/r(z)) § x*~! &°% dx.
0

Since the pth quantile of an extreme valus random variable is
X, =u + wpb.

the pivotal z, can be expressed as

A

z, o (u - x’) /b.

The probability distribution of z’ can therefore be used to obtain
exact conditional confidence intervals on axtreme value quantiles. One
first obtains the constant of integration k(a) numerically. Next, the
P(ZP S t) is evaluated numerically for sevaral choices of t until the
quantile of the distribution of ZP is determined to the desired accuracy.

Finally, the confidence bound on x_ is trivially obtained by pivoting.

§. A Bayesian Intexpretaticn

Independently of Lawless, Bogdanoff and Pierce (1973) arrived at
results identical fo those outlined above from a Bayesian point of view.
Bayesian results are much easier to explain to nonstatisticians. This is
particularly true for the problem that I'm prinarily intarested in, con-
fidence intervals on a quantile, and the advantages of Bayesian motivation
for a particular application will be discussed in a later section,
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Let (y;) be the order statistics of a Type II censored sample of size r S n
from an extreme value distribution. The usual joint noninformative prior
for the location parameter (u) and scale psrameter (b) of a location-scale
fanily is:

x(u) * constant x(log(b)) « constant
®(u, b) « 1/b.

Using the expression for the extreme value pdf given in a previous
ssction, the corresponding posterior distribution is seen to be
4
®(u,b {y) * b ") exp (X (y, - w/b)
1=l

coxp (I 8xp ((y, -w)/b)).
The location parameter is readily integrated out giving

x(b [y) ® (1/b) * axp (T y,/d) /(=" exp (y; /)] .
il

The normalizing constant is determined by numerical integration. Inference
based on this result will be shown in the next section to be formally equiv-
alent to Weibull inference using the pivotal for the shape paramatar.

Lat ¥(u, b) be any scalar function of the parameters about which in-
ference i{s to be made. Assune that Y(u, °) is monotonically increasing in u
for fixed b, If a function can be found which satisfies this condition
plecevwise, then the following results may still be applied to each monotonic
section of the function. Some useful choices for ¥ ere

¥(u, b) = u (location parameter)

¥(u, b) = u + log(-log (1-p)) b (pth quantile)




¥(u, b) = exp(-exp((t-u)/b))) (reliability at time t)
¥Y(u, b) mu - yb '(ucan; y is Buler’s constant)
Define the inverse function n(s, b) by means of the relation
¥(n(s, b), b] = s,

The posterior c¢df of Y can bs expressed as

P (Y(u, b) S8 |y) = P(usn(s, b) |b, ) x(b |y) &b

It is easy to show that the conditional distribution of A = exp (-u/b) given
b is the following gamma distribution:

x(A |b, y) = (1/F(x)) [Z'exp (y,/0)) A*71 axp (- A T'exp (y,/D)).
Siaple algebra also shows that
P (u s n(s, b) [b, ¥) = P(A 2 exp(-n(s, b)/d) |b, ¥).
Combining these results, we hav; finally that

P (¥(u,b) s 8 |y) =

f(1 -I(exp (-n(s,b)/b) I"exp (y,/b), t)) x(b |y) db
0

wvhere I1(6, r) denotes the incomplete gamma function

1(0,r) = (1/r(r)) § x*"! exp (-x) dx.
0
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For a confidence bound on the pth quantile LI

n(s,b) =g - vpb

and

P(x, S8) «J (1 - ICaxp (v, -8/b t'exp (y,/b), r) x(b |y) db.
0

The fact that for inference about quantiles and about the shape (or, in
terms of the extreme value distribution, scale) parametar the Bayesian
approach is equivalent to the Lawless conditional approach will be demonstr-
ated next,

1. Eormal Equivalence of Bavesian and Freguentist Results
First we demonstrate that posterior intervals for the scale parameter

(b) have an exact frequency interpretation. Let by be wuch that the post-
erior probability that b is greater than b; is y. Since

P(b 2 b)) = P(b/b £ b/by) =y,
ve make the change of variable
z=bsd

and substicute for the y, in terms of the a, to get

i

y = Ix(b |y) db = [ exp (Iy /b) b™F /(T"exp (y,/b)]" db
b, 3!

B/b,
« [ axp (!a‘z)/[t'oxp (a,2)]° 2*72 dz




blbl

« § oxp (3a,z)/[Zexp (a,2)]" 2£7% 42
0

b/by
- ! h(z |a) dz.
0

To ses the squivalence of the results for a quantile, we make the sub-
stitution

t= (G - s)/I;
and note that
oxp (v, - 8/b (" axp (y,/b))) =
oxp (w, + th/b - U/b (I exp (n‘l‘;/b + U/b))) =
exp (v, + tb/b (I"exp (a,b/b))).

The change of variable z = G/b gives the desired result.

§. The Log Generalized Gamma Ristribution

The probability distribution of a ganeralized gamma random variable T
is

Fo(xi a, B, k) « (a/T(k)) (x**"1/8*%) axp (-(x/8)%).

Details on inference for this family may be found in (Farswell and Prentice,
1677) and (Lawless, 1980)., Note that the case k = 1 corresponds to the
Veibull distribution.




If T has a generalized gamma distribution, then Y = log (T) can be
written in the form u - oW wherse

B = log(p) + 10:(}0/6!.
0 = 1/(akl’?)
and W has the probability density
£,(0v; k) = K2 /r(k) exp (KM 3w - exp (w/k/?)).
Y is said to have a log generalized gamma distribution.

By varying k, one obtains a family of location-scale dsitributions
ranging from the normal (k = @) to the extreme value (k = 1), Although we
will rostrict attention to the case k = 1, it is straightforward to adapt
both the frequentist and the Bayesian approsches to arbitrary fixed k and
avan to certain regression situations (Jones et. al., 1980).

9. Approximate Inference for the Log Generalized Gamma Ristribution

Let ¥ and ¢ denote maximum likelihood estimates of u and ¢ subject to
the constraint
y’o - ; + vpa'O
that is, the MLE of the pth quantile is required to equal Ypo If ﬁ and ¢
denote the unconstrained MLE’s, and if L(u, ¢) denotes the log of the log

generalized gamma likelihood, than the asymptotic distribution of the sta-
tistic

V(y,o) = -2[L(E, &) - LG, )]
is x‘ with one degree of frecdom. Lavlaess (1984, sec. 4.2) suggests that

inference basad on V(ypu) is acceptabls for moderate to large samples but
that the approximation may be inadequate for small samples.
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DiCiccio (1987) has applied general techniques of Barndorf-Nielson
(1986) in order to develop a computationally inexpensive modification to the
signed square root of V(y,o) vhich yields a likelihood ratio based approxim-
ation suitable even for quite small sample sizes. The numerical integration
required by the exact methods is only troublesome for moderate to large
samples; so the approximation is actually of questionable use over the range
of sample sizes for which it is inaccurate.

I will not reproduce the details of the DiCiccio approximation here for
tvo reasons. The most important of these is that only the results are
pressnted in (DiCiccio 1987) and to repeat these results without having
studied their derivation would serve no purpose. A second reason is that
although the spproximation is inexpensive to compute, the formulas are
messy, and to reproduce thsm here is to invite typographical errors. Inter-
ested readers should refer to (DiCiccio 1987) and to the FORTRAN implementa-
tion as subroutine LAWAFY in the appendix,

10. The Accuracy of the Approximation

The DiCiccio approximation can be shown to be accurate to O, (n"%/?)
(DiCicecio, 1987, p. 37), so0 an extensive simulation study of accuracy is un-
necessary., The results of a very small such study are presented in Table 1.
Samplyr of sizes ranging from 10 to 30 were taken from Weibull populations
with different shape paramesters. Both the Lawless and the DiCiccio methods
were used to calculate 95 percent lower confidencs limits on the tenth per-
centiles of the Weibull populations and the mean and standard deviation of
the percant different between the Lawless result and the DiCiccio approxima-
tion vere calculated for 100 replicates for each case. One would expect
that the approximation error should be a rapidly decreasing function of n,
and this {s observed to be the case. The quality of the approximation is
also seen to be a function of the shape parameter of the population.
Halving the shape parameter (from 10 to 5) approximatly doubles the mean

percentage error uniformly over sample sizes. Also, the approximation error

actually appears to be a function of the number of uncensored values rather




than the uverall sample size, which is not surprising. Overall, the
DiCiccio result appears to be satisfactory for samples of 10 or more un-
censored values, and remarkably good for ssmples of 30 or more observed
values. This conclusion is based partly on the small simulation presented
here and partly on experimenting with various cases of real and simulated
data,

1l. Ap Application: Composite Material Basis Values

A criterion used both by aircraft designers when chuosing a material
for a specific application and by the Federal Aviation Administration when
certifying a new material for a structural aircraft application is the
material basis value. A 'B-basis value' 1is defined to be a lower 95 percent
confidence limit on the tenth percentile of the strength distribution of a
material and an ’A-basis value' is a 95 percent lower confidence limit on
the first percentile, The reason for these tolerance limits, which have
bean used in the industry for decades, is that a designer is primarily
interested in the lower tail of the strength distribution. In order to
design a reliable structure, he would like to sstimate the stress level at
vhich a material is 90 percent or 99 reliable. A tolerance limit i{s an
attempt to estimate these quantiles in a conservative way. Such conserva-
tism is particularly necessary for advanced composite materials, which typi-
cally have relatively high strength variability. Also, advanced materials
are generally expensive to manufacture and test, resulting in small sample
sizes.

The work presented hers has been motivated by a need for improved
methodology for calculating basis values and for communicating lower tail
quantile information tn the engineer. Typically, the engineer who routinely
calculates arnd interprets these numbers has little appreciation for the
rather convoluted frequency arguments behind tolerance limita. The long run

proportion of times a statistic calculated from successive samples of size n

from a hypothetical population is greater than a certain quantile of that
population is of little help to the statistically naive. The simple state-
ment that the tenth (first) percentile is greater than the B-basis (A-basis)




value with 95 percent probability is much more direct and intuitive. Also,
the Bayasian approach presents all of the information in the data about the
lover tail quantile of interaest, which is what should be the ultimate
concern of the engineer anyway. The fact that the tolerance limit is only a
convenient summary statistic of this distribution becomes clear when the
user {s presented with the entire posterior and shown how to determine
arbitrary tolerance limits graphically,

Table 2 presents B-basis value calculations for a graphite fiber/epoxy
material made by four fabricators. Note the agreement between the DiCiccio
and the Lawless calculations, Figure 1 consists of the four tenth per-
centile posteriors. Not only do two of the fabricators have nearly the same
B-basis value, they also have virtually identical quantile posteriors.
Several questions immediately come to mind: Why di{d the other two manufac-
turers produce substantially weaker material?; Are other lower taill gquantile
posteriors for the two 'similar’ fabricators as close together?; ete, Ex-
anining the poaterior rather than a summary statistic of the posterior leads
to insight into the data that might not otherwise be apparent. Figure 2
demonstrates that the B-basis value can be retrieved graphically.

Table 3, Figure 3 amd Figure 4 present corresponding results for
anothar material: woven Kevlar fibers in an epoxy matrix, These data show
much less fabricator-to-fabricator variability than do the graphite/epoxy
data. This can readily be seen from the tolerance limit calculations. The
fact that thers is essentially no evidence in the data to suggest that the
fabricators differ with respect to the tenth perce tiles of their strength
distributions is made particularly clear by the 'overlapping’ posteriors of
this quantile.

12. Concluaien

This paper reviews two results related to conditional i{nference in lo-
cation-scale families, emphasizing inference on Weibull quantiles. These
methods are dus to lawless (1972) and Bogdancff and Plerce (1973). For the

case of inference on quantiles both procedures are equivalent, though the




former is motivated by frequency considerations, while the latter is derived
from a Bayesian point of view. The recent work of DiCiccio (1987) greately
reduces the computational burden of both methods with little loss of
accuracy.

The advantages of the Bayesian interpretation, at least for inference
on quantiles, has baen demonstrated by means of an example from an engin-
sering application.
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IABLE )

Accuracy of the DiCiccio approximation

A simulation of 956 lower confidence bounds on the 10th percentile using the
Weibull distribution with 100 replicates per case vas performed. The
results are summarized below:

n r Shape Scale As Stan, error of mean
10 10 10 1 1.09 .029

20 20 10 1 . 380 . 0086

10 10 1 2.20 059

20 20 1 761 017

30 20 1

752 .016




Carbon fiber / Epoxy specimen tensile strength data
95% 1CB on 10th percentils

Fabricator n Estimates (KSI)
Lavless DiCieccio

A 48 2441 2643
B 36 271.4 271.6
¢ 33 228.2 228.5
D 2% 269.5 269.8
TABLE 3
Kaviar fabric / apoxy specimen tensile strength data
953 1CB on 10th percentile
Fabricator n Estimates (KSI1)

Lawless DiCiceio

A 23 77.58 77.64
B 18 76.36 76.50
c 30 77.18 77.23
D 10 78.45 78.64
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Appendix: FORTRAN Listings

The following programs were developed on an Alliant FX/8 and should run with

little modification on any 32 bit machine. However, the software has not been

tested to the point where it can be considered error free. The programs are
provides as a guide to an individual wishing to implement the nlgorithws discussed

in this paper.




progranr Lawpgm

¢
¢ Mark Vangel, 8720788
¢
¢ Program to implement Lowless' procedure for
¢ conditional confidence intervals on quantiles
¢ for & location/scale family. The family chosen
¢ here i3 extreme value. Dots may be Type Il censoren,
¢ Note thet conditioning on the ancillaries gives the
¢ equivalent of an HPD reaion tor a noninformative
¢ prior,
¢
A {mplicit double precision Ce=hs o0=32)
parareter Cimax = 500)
charscternl? flenme
dimersion x(imaa)
[
commoen /dat/
common /ca/ cnorms, sumas M,k
common /ect/ ¢ QaT, wis ¢
commor /cd/  tol
data one /l.du/
¢
deta coarses fine, eps /l.d%7, loa=7, 1,n=8y
¢
3 o= (Ltput unit number ana filenane
write (b, %) "Dutput unit number !
resg (S5, *) dtout
1t (iout «nes 6) then
write (&, ») 'Filenams
rean (S,%(al2)') 1lennre
' otern (unitwiout, filemtlenme, statuss'rea’)
end 1t
¢ .
¢ = This Lrooran is testeu with raruns yata,
¢ 1t car also be used for cata fro- a fite,
¢ The first record of tne dinpyt file nas tre
[ sarple l*!! and tne numpsr of uncensores values,
write (6, %) *Enter | for data fere fi{e
write (&, ») N for rancgon oata,'!
reagd (5, &) dgat !
it (icat .eqs 1) then
write C(hy %) *Filename !
reann (5, '(all)t) tienme
ocer (urttmigutel, 4ilemtlenme, stutusmtole’)
reac (dout+l, ») n,
¢
c == hotet the first field on esct remaininao reccry 95 @

¢ batch indicator not usea for this nreyrasc,
do 10 4s1, &
read (fout+l, ») gummy, x (1)
10 continue
call gsvrgm (ke &y )
else
write (s #) 'Sepd
reac (5, & ) d{geed
write (¢, %) *weibull shane anc stele 1!
reacd (%, %) shp, 8¢l
write (6, %) 'Senmple si2e¢ 7!
read (5, %) n
write (6, %) "hysber uncensoresg 1!
repd (5, %) &

Al
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o

20

6 60 -

== Get the pseudos=random sample
call rnset  (iseed)
call denuid (ny shps n)
call davegn (n, 2o x)
do 20 1=}, &
x (1) = el wx (1)
continue
end {1

e Get the Weibull MLE's
call wnemle Ceshos escls Ny ko no epss dter, 200)

= Extreme value location (xmu) ana scale (xsg) estimates
amy = dlog (escl)
xsg = one /eshpo

== Write out what we have so far,

write (dout, »)

write (douts, #) *The Lawless conditional procedure’
write (douts, »}

11 (foat ones 1) then

write (fout, ) ?"Seed 1 ' dseec
endg {1

write (fout, #) 'Samole size t ‘40
write (douts ®) 'Number uncensores I 3

11 (idat «nes 1) then
urite (dout, ®) 'weibull shape, stale t Y. shps wel
end 9

write (fouts, *) 'weibull mLEW ! Yy esnrs escl
write (fouts *) 'Eutreme value Llocation §t %y any

write (iouts ®) *Extreme value scate t Y xs

write (fout, ®)

write (louts M) 'wedibull anta

write (foutese 10W) (aCidys imils k)

format (*11Q.4)

=e hows CAleulate the tolerance (dmit using Bridr the
enact methoo ana LiCiceio's aporosimation,

write (G, 0)

urite (6, %) 'Lower contfigence bound calculution!

write (&4, %) ‘'Cuantile ?¢

reac (5, ») o

write (6y %) *Contidence coefficient \
redo (S, w) gar

we Lavwless conditional procedure (Toachnometrics, 1537%)
call Lawles Cxs Ny ko ©e ams etol)

== DiCiccio's approximation (Technoretrics, 1¢:7)
call Lavwapn (xso ns ks Do Qurms atol)

=« hrite out the tolersncs Limit results
write (fout, »)
write (douts ») *Lower confiencs tound on ¢ Quartile!

write tiout, ») ¢ (Fxtreme Value an< Wweittyull)?

write (dout, #) 'Probability t 'y

write (fouts #») *Lonfidence t 'y gor

write (dpouts ®) *fatreme vatue Quartite T 'y 2p

wreite (fouty %) 'Lowiess tolerance Limits 1 'y etol, lop(sety
write (10uts ®) YAppronimations t Y, dtol,s loatatol
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¢ weite (#,2) *imedd, 2mpdf 2
redad (%,%) qtype
itype = ]
write (#,m) *Min and mavw for sbscissa 1
read (%,8) amin, omax
write (#,%) *Min and max fYor erdindte [0,7 for aetpult) M
redd  (®,%) omin, omax
call dnits (940)
call binttt
call comset (irasex(li), amin)
call comset (ibasex(l2), amar)
it (omax .ne, zero) then
call comset (ibasey(ll), orin)
call comset (fbasey(le), oman)
end ¢

it (itype .eqQq. 1) then
coll npts (nplot wna)
call check (quant, cdf)
call npts  (nq)
call dsplay (quant, cdf)
go 30 =], nplot=]

coll cplot Cquant C(iwnqgel), cAf C(imnasl))
] continue

else 11 ({type Jea, 2) then
call npts (nmlot %ng)
call chegt tavanrt, dens)
call npts (na)
call gsplay Caquant, oens)
do 40 iml, nplot=!

call eplot (quart (Yxna+l), cens (imngel))
40 continye

eno {1

call movaps (0, 1000)

coll anmode

resc (w,»)

goe to 2

end {1

write (d,m) dGuit
read (s, '(al)') ans
it Cans onee 'y') g0 to ?
call finitt (0, 700)

stop
end

A3
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program petpIt
Hark Vangel, July 1982
Frogram to calculate and plot the posterior of »

percentile for the weibull models This program calls
subroutines from the Tektronis Plot 10 Library,

DO GCOOD

charscters0 *i-~ame

charattersl gns .

'dimension x t1000), cat (5000), dens(H000), quent
$ tpoint (100)

date zero, one /0,40, 1,40/

(8nt9),

ipeint (1) & ¢
nq s 100
nplot u 0

¢ we Loop Over all files,
write (s,%) 'Omprief outnut, lscomplete outout
reso  (®,8) {briet
1 continue
write (o) ‘Fi(ename ?°*
reacr (m,'(a20)) flenme
it ({Lenme .eq, * ') Qo to ?
nrlot @ nplot ¢}
open C(unitmiy, filemtlonmn}
read (10,%) niamp, nmohs
do 10 i=l, nobs
read (10,%) {dumsa
comntinue
close (10)

(ipoint (mplot) +4)

g

ipoint

¢ s Calculate tne nostertor

write
read
it (o
write
read

(nplot+1) = dpoint (nplot) +nobts

for
(hom) 'Percentile T
(mon)

s9te ONE) © B /1N
(®,2) ‘Hange of values for posterior ¥
(#,%) aqrin, Qrax

o snecitied Aavantile

da ® (amax=amin)/(na=1,)

write
write
write
dc 2C

(h,om) J
(wpn) ¢
(%,r)

i®l, n2

Pasterior
fron

ot Y,100%u,!
.'qm‘ﬂl t to ',

percentiin !
aman

s (nplot =1l)ung #9
B ({wl) #eid ¢onin
(s (ipointinnlot) +1), nsamp,
pe edt tdidn))

1) then
(43x)s cd?

{on
ouant (idx)
coll lawapu
$ quant (ias) »
it (dboriet ey,
write (w,®) quant
end {f
gontinue
a0 to 1}

rohs,

Cima)

29

== Now plot tnhe results
continue

weite (#,8) 'Plorsy Y
reeac (%,'(al)') any

11 (ens .eQa 'y') then

~ o

[ad

s« Lensity colcuiations not yet irplemente,

Al
310



¢ write (0,8) *lacat, 2mpagf T°¢
¢ resd (o,%) {type
itype s 3
write (9,%) *Hin and sex for sbscissa ?°*
read (%,%) qain, Quan
write (m,0) "Min and max for ordinate (0,0 for detault) T
read (%w,%) oaain, oman
call dnitt (940)
eall bindtt .
call comset (ibasex{ll), amin)
call comset C(ibanen(l2), aamanr)
11 (oma1 ohe. 20r0) then
coll conset Cibaseytll), omin)
call comset Cibasey(i2), oman)

end (¢
‘ +
11 (dtype veq. &) then
call npts (nplot ®nq)
call check (quant, cdf)
call mpts (n@)
call dsplay Cauant, ¢df)
@0 30 (m}, nplot=~)
call cplot Cquant (iwnqel), cdf (fenqsl))
] continue
else {f C(itype .eqs 2) then
‘ call npts (nplot &ng)
! call check  Cavant, dens)
‘ coll npts tna)
call daplay (auant, denm)
do 40 im), nplotel
. call eplot fquant (isngel), dens. (imnae+l))
40 continue

eng {1
call sovabs (0, 20000
call anmode

read (%,»)
g0 to 2
end (¢

write Ce,%) 'Quit !
read (s,'Cald') ans
A1 Cans he. 'y') go to 2
call finite (0, 700)

1tep
end




prograr Lawsinm
Hark Vangel, 10714/%¢

Program to test by simulation an aporoximation of
DiCiccio (1987) to the Lawless conditional rroceaure,

Tmplicit double precision (aeh, o=2)
parameter timax = 500)
tharscterwl? flenme

disension sliman)

common /dat/

common /ca/ cnorns sumd, Ry ¥
' common /eb/ po gams Wi ¢t

common /¢d/ tol

data coarse, fTine /l,d=d) 1.nw?/

¢ we Output unit number ana tilenanre
write (6, %) 'Output unit numper M
read (5, %) dout
1t (fout ne,s &) then
weite (&, ®) *Filename *°
read (S5,%(al2)%) tlenne
open (unitsiout, ftilemflenmes stotusetnent)
end 4t

¢ = et simulation parameters
write (4, ¥) 'Seed M
read (%, » ) dgeen
write C(bs %) 'Wedbull shaps ancd peals ¢
reesd (5, ») shps el
write (b, %) YGample ai2e M
read (5, ») n
write (byr ¥) 'Hyumtier uncensored !
reso (L, ®) &k
write (6, ¥) 'Nymber o0f replicatmg
read (%, %) nasim
write (o6, %) 'Ruantile M
resas (5, ) o
write (6, %) *Lontigencte coetiigient 7
resd 5, %) qanr

¢ o= Wr{te OuUuY what we have 8o far,
write Clouts, »)
write (1outs ®) *The Lawless conditional crocearyre?
write (fout, W)
write (d0ut, ) 'Seeq
write Cdout, ®) *hurter of raplicater
write (douts %) 'Sample size
write (fouts, %) 'Aur-er untergorsa
write (dout, &) 'Guantile
weite (fouts %) 'Contidences comtdiciant
write Ciouts %) fuedhull share, scols
write (fouts, #)

Vier!
reym

e me ee e e e

- o ®» o ® * =

L R Y N Y
-

4 == Loop over tne rn.= -t o' rarlicates
coll rnset (vaeec)
) s 0,d0
s » (eab
gn 99 ie]l, neim

A6
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ws (gt the Dspudoerandor sample
eall denwic (s shoe W) '
calt dsvran (ns xo n)
da 20 $els &
x (1) = sl ()

0 continue
¢
¢ we Lawitss tenoitiarnal vrocmdure (Tecrnoretrigse vty

coall Loawles (noe ne %o ne gam, etnl)
¢
¢ -s PiCicciots soprounimation (Techroretricss 16570

call Lawapn tus Py Ko Do gam, stol)
¢
3 s Meagure appronimatior in Leres atl oper¢ant srrof

dret w (atol =etol) Jetol ®i10L,
¢
¢ an hrite out the tolerdnce Limit results

weite (douts ®) ‘Lawless o Ayricein, nelta bt t,

S etols atol, upct

g n ¢ +gpee

g § gy ¢Apet wipet
(1] continmue
¢
e, ma Yoah 8N3 SteN. QEV, nt 4% errer

g w oy /nsin
sy ® opurt (lss - nedn wy o ms) Zlngis wirgde mie)))
write (fouts #)
write (f{oute ) thyeratts o #rrof 1 Yo 8
write tiouty W) Veygaayr dJeviaticr st T AaT 1 Y
t
stoc
enc

A7
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subroutine lawles (x» nas kas par Qanar, otol)d
Mark VYangel, May 1908

subroutine *Lavies calculates one sided lower toleranmce lirity
for the Wweibull erodel using the Lawless conditional procerdure,
This routine performs 'enactt' catculations by numerical
integration. For even moderately darce semoles, the "iCiccic
soproximation used {n subroutine "Loawdpn’ {8 very accurate
and tomputationally Less troublesome than the method used nere,

a «=» Data (Input)
[} wa  Total sample size tinput)
] we  Number of (uncentored) observations (lnout)
[y == Propability associated with auantile xp (Inpy*)
0 «= Configence Level for Lecp on up (Inayt)
etrol wa  YEypct' lower taolerance Limiv (Ffutout)

ket 8 Lowless, Technometricy 1978

implicit cdouble precinion (a=hs o=1)
dimension x (1)

common /per/ esho, escls xmus o
common /¢a/ enorm, suUmas Ne b
commen /et/ Do pan, wps ¢
common /cd/ tol

external xntand, xgont )
data coarse, oo, fine /lan=2s lod=5, lode=?/
date 2eP0s ONEs Clo Ch /000 1a@Us otn0s 1a?ci/

ew Pyt ptuft 4n common

n " N
k s ki
<] LI -2
aem ® gama

me gt the Weipull H Tty
call wnrmle (esnp, escls, noe ¥s uy Pps, dter, 1N0C)

== Tolerance Linit factinr ranae, THhis ranos 485 hroac
enouer for virtuslly amy practical confidencs comtffigrany,
Yicanit provides o tirst approuiretion to the talerance
tinit, hote that 'dY¢cont returry lower toitrance (imity,

gam . one »Qam

cull deconf (ks N, ks ps cams tolimet)
aar e ohe =génr

tolimt = log (Clescl /tollimy) wmeghp)
1l s ¢l wmtolimy

h B ch wtolimt

write (m,®) ' Lawles 1 First guess = ', (o3 (tollmt)

e« NOW Q0 to Loy Bcale,
do 10 i=l, %k

(1Y 8 Llog (n C4))
tontinue

we Extrene value tocatinn Cxmu) ano scale (xso) estiratsy
amu ® log (esct)
150 B One Jesho

A8
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o o0

=« We need the ancillaries and their sum
suma B zero
do 20 {#1, &
suma  ® guma ¢(x (1) =xmu) /xs3g
continye '

o= Next we obtain the constant of integration,
Use an scaptive quadrature routine to integrate
XNTGNL an (0, infinity).
[ 1,1-14.) e one
apserr » rero
relerr = epa
coll dadegtl Cantand, xeros, 1, abserr, relerr, xky, etr)

«« The normalizing constant

cnorn = one /ak

write (¢, »)

write (6, %) 'The normalizina constant it ', crore

s« pth auantile for stangare extreme value digtrinytion
wt ® log (=log (one ep))

“s Fatimated oth aquantile for dnatae
2D B AmMY ¢n8Q Wud

ue Frentts aljorithr to tind tolerarce Limit factnmr pucr
that the integral of YHNTCHWD trom (2, dntirdty) eauals 'aar?,
The f1irst paty nas & Larne errcr tolerarce to save tirg,
The seconu cass ussy the final tolerance.

raxdt ® Ly
atyert ® zerc
relerr ®» toarse
tol . guarye
call gzbren Cnconfs spserr, relerr, 2l, 20y mAnit)

=e Poye in for the rill,

manit = 10C
2l L] 0950,\1 weh
th w 1,053 #zh
relerr » tine
tol n {ine

call dzbrenm (nconf, aLverr, relerr, 21, 2V, »pait)
tolfct = 2h

s Caleulate the tolerance |imit
etol & eap (amu =z2h wxgg)

w= Restore the 30t
do 30 fe), &

x (4) = exp (x (i)
continue

return
¢ng
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subroutine lawapx (%, nsampa, nobea: Pa: gama, atol)
Mark Vangel:, July 1968

An gxcallent approxisation to the one-sided Weibull
conditional tolerance limits of Lawless (1978),

X == BData (Input)
nsamp =-= Total sample size (Input)
nobs == Number of (uncensored) observations (Input)
] == Probability associated with quantile xp (fnput)
] ~= Contidence level for lcb on xp (Input)
atol -= Approximate lower tolesrance limit (Qutput)

Ret¢ : Lawlesws. Techrometrics 1978
Diciccior Technometrics 1967

implicit double pracision (a=h, o-3)

dimenwion x (1)

commoen /par/ ushp, ustls XMy xeg

commen /candt/ py gam: Neamp, nobs

external aconti

data maxit /1007 epe /1.d=8/

data coarsey fine /1,d8-2+ 1,d=7/

data zeray one /0,d0y 1.d0/

data cly ehy dly o /.000y 1,2¢0s 940y 1.,08d0/

== Pyt stutf in cemman
P = pa

gam = One ~gamna
nobhs = nobsa
nsamp = neampa

-« Get the MLE's of the Weibull parametars
call wnhrmle (uahp, uscl, nesamps NAbes X+ BpPS, Lter, maxit)

-~ Talerance limit fector rangas. This ranga is broad
snough for virtually any practical contidence coetficient,
Yicont' pravides a first approxination to the tolerance

limit,
call fcond (x: nusamps nobe, P gam: tollmt)
zl =gl stallime
] w gh otollet

write (ey8) ' Lawapx § First guess = ', toliat

~= Brant's algorithe to ¢ind tolerance limit factor at
the desired confidence level. The firat pass has a
large error tolerance to save time. The second pass
uses the ¢inal tolerance.

saxit = 100

abserr = zereo

relerr = coarss

tel s coaras

call dibren (aconél, abserr, relerr, 31 zh, maxit)

~= Move in for tha kill.
maxit = 3100
3 gl egh




sh ® dgh eozh

relerr = $ine

tel s fine

call dibren (aconéi. abserr, relerr, zl. zh, maxit)

atel = zh

return
ond

All
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subroutine dcont (x, nsamp, mnobs, s g+ tollmt)
Mark Vangel, October 198§

A noneiterative first aporoximation to the Lawless conditinral
procedure Cor, slternatively, to the posterior of » quantils under
o flat prior). Thne routine i3 written for two paramter Weipull
analysis, but extension to the aeneraldyzed L00 gamms fa~ily i
straightiorvards This routine returns the estimated confidencs
Limit for a provide~ prodavility level ang contfidence (hence
the *{' ~ for inverse = {n the routine name), Tnis routine it
approzimately inverse to ‘acont', It provides the ‘same result
88 ‘lLowapx' put with o less sccurate aporoxiration,

Ret 1 Dicicetor Tader Tecnnometrics 1987 p,3%

X «= Date (Innut)
nsamp == Total semple size (lnout)
nots o= Nymber 0t (uncensorecd) observations (lnout)
] ew Configence level tor (et on p Clmout)
p we Probabiiity assnciated with aquantile xn (Inout)
tolime == Upper tolerance Limit (Futput)

OO0 0000000000006 00000~00

impiicit double preciston (a=h, c=2)
dimension x (1)s 8 (&)
cats eps, raniy /l,0=%, 109/
dats zero, one, half, thhpld, fuhalt
/0ed%s 1e00s Ueddbs 145800, 2,%cC/

(3 we Get the wWeidull ¥LF'g
call warmie Cusho, uscle Nnsami, POPS, ks erse Tter, 10°)

¢ == Transtorm to entre~e value aistrivution,
uioe = [oy tusct)
uscl ®  ore Zushp

c == Caltulate the derivactives of tre Loy Linslinoor 2t
¢ the “LFf.
wp ® Log (=log (one =¢))
do 3C j§si, &
s{j) & zero
do 4{ im}, nobs

? & (loa(x(i)) =uloc) Zuscl
t 2 ({2 «wD) Bw{) nexn (2)
s(j) 8 g(j) et
bJ continue
$(j) = stj) +i{nsamp =robs) =t
3¢ continue
5
020 » =nops
6ll = eg(})
d0? » ={nots ¢3(2?))
¢c3C = nots
g2l = P2snohs estl)
gl2 = 3s3(1) ¢s(?)
d03 = nobs e3wg(2) es(3)
d4l = enobs
d31 = =(lsnots +s5(1))
622 ®» =(4mnobs +543(]1) *3(2))
gl e =(703(1) ¢4sg(?) +s(7))
004 = enobs =(Twg(2) ¢bms() ¢3(L))

Al2
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L2 2K 4 )

= The epproximate mean ano variance of r» the sianeo
square root of =2 times Likelihooo ratiosr s calculated 4r
terms of the oij,

vil w =d02 /(420 »d02 =all =dl))}

a = (vil wenplf #(=d12/d02 ealiwall /7d02wed)) /2

b s (vil #(=d22/d02 *+(d210d03 e2ad13sal] +dl2en2) /dl2rn?
o(49dl2udlingn3 +d0indlinw?) /g02mnY
¢29(alinmg03 /d02mmg) wm2)) /4

e = (vl] wmthhalt #(c30 «Xnd2lilndll /7d02 +3Xmgdl? w(dll /a02) wx)
=g03 #(dll/d02) »w3)) /¢

d = (vl w2 #(dd? =(emd3lndll +39g21%e2) /d0?
*(6my22mglion? «120g218d1?ndll) /d02wn?
w(6md21ng0Ingline? +4mgl3wglinn? +120(gdl2rall)med) Jof2r?
(1281209030 dl1nnd eg0bugdlined) /d0gwnd
w3ndllens, 2d03nnz /c0?2898)) /24

RMU ® g 2w
K39 & gart (one ¢2m(b *34g spamc) ¢llwcwny)

o= DiCiccio, equation b,

29 s dnorin (g)
rg S XMy *xsg *2a
Ye B yloc suscl *wn

tollmet = yp eugel w{syrt (vil) #wlep echra w2
(fvhald wg wrl od) sry an}))

= Go to Weivull scoles
tollmt = exp (tolimt)

return
end
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double precision function xntgnd (2)

Proportionsl to the pdf of » certain pivotal auantity,
The normalizing constant, '¢norm®s decencs on the
dats and must be obtaineo by & oreliminary numerical
integration, Unce ‘cnorm?® s known, XLTGM( becores a
pdt! and s used by YNTOGND auring the primary nurerical
integration to aet the tolerance Limit,

Note ¢ ‘cnmorm? must be imnftialized (to 1) Lefore the
preliminary integration, Following thats ‘tnor=!
Can be assignea the value which makes XNTAND p patd,

implicit double precédnion flawn, o=2)
dimension x(l)

wa 131 {3 used by YNTGND, hence the common tlock,
common /dat/

common Jcc/ sl

common /ca/ CnOrm, sumbs N, b

common /Zpar/ esnhns estle NPu, xse

date 2er0, One /Ny10, 1,20/

pur = one /float (kml)
sl @ jerc
t B ONne
do 10 imi, «
11 (4 sea. k) t = dhie (n =k ¢1)
e % (n (4) =pmyu) /asp
sl = g1 4t waead (g wmp mupar)
continue
xntgng & (sl /dule (k)) wn(=k) ®rur
antgnd ® xntand ®exl (sure X(2 Hrpwr =0ne))
xntyrg ® antang Mcehore
return

engd
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doudle precision function xcont (ts)

Subroutine to deternine the orobatility of
the pth quantile being Less tham T(t), where T i3 the
tolerance Limit factor,

implicit double precision (ae=n, o=2)
common /¢et/ ps Qoam, wps ¢

common /c¢d/ tol

enternal yntand

data rxeros one /0,8v, 1,00/

ws tt? {g to be tound sn thapt the integral nf YITA ™ (rnas
(o, infinity) eaquals ‘aant,

t "t

sbserr w tol

relerr m 2ero

call caoagt tyntand, zero, 1, soserr, relerr, xis ere)

xcon! = xi{ =gem

= This i3 just some terminal outnut to arute the user while
Pe's waiting for results,

write (w,n) ¥ Tolerance factnry cormfiuence ¢ Y, t, xi

return

end

AlS
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double precision function yntgng (2)

Function to calculate the integral for
deternmining the confidence.

implicit double precision Cash, o=2) ‘
common /Z¢b/ Ps Qams wh» t

common /¢a/ cnorms BuURd, T L]

sommon /¢e/ B

dats 2ero, oene /0,d0, l.00/

pur » one /1leat Ck=l)
es The first factor is the function which was inteorated

to get ‘fchorm’,
yntgno ® antgnd ()

we The seconc factor s the gamms edt evaluates at 3 poine
which depends on s, a auantity cateulatend dn XNTGND,

uplir = 3 wdexp (wp ot »2 swpur)

Q s one =dgamdtl (float (k) uplim)d

yntgne = yntgnd »e

return

end




double precision function acontl (t)
implicit double precision Ca=hs o=2)
dianension x(l)

common /dat/ % .

common /7cont/ ps Qams Nsdmp, NOLS

call acont (x» nsamp, nobss ts po prot)
acontl = prob =gar

return
end
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lubroutino'aconf (xs NSOrps nobs, Qs £+ conf)d

Mark vangel, July 19&°*

An sporosimation to the Lawless conditional procedure (or,
slternativelys to the posterior of & quantile under & flat prirre),
The routine is written for two paramtcor Wedbull snelysis, byt
extension to the generalizec Log gamma family is straightinrearn,

Ref t Nietecior Tader Technometrics 1627 p,Y?

x s Dpta (lnput?
naarp o= Total sample size (Input)
nobs == Number of (uncensored) cbservations (Innut)
qQ ==  Value tfor whien F (xp =C g) i{s desiren (lnput)
p == Probabitity vssociater with quartile ap (lnput)
cont == P (xp 8¢ Q) (Cutput)

implicit double brecision Ca=h, o=2)
dimension x (1), 8 (&)

conmon /par/ ushows usclwe nMuUPY, RECPV
date eps, maxit /1.d=5, 100/

data 2ero., one, halfs tnhplt
* 10.000 lud°l -50% losﬂL’

== (et the constrained WL Py, yhere o {9 congtrpines to
be the pth quentile,
call cunrnl Cpy as cohns cocls neamd, nors, xs €08, dter, »ppit)

= Trangfore tO entreme value districution,
wloc = Log Cuscliw)

cloc =& (oe (escl)
uscl & one Zushiw
esel B one /Zeany

ww Cpleviate thr sianey square root of =2 tires the L
ot the tirkelinagt ratio
Wb F log ( =lo,; (ons =)
el = 2er0
ul = gero
0o 20 {sl, nots
t & log (n (4))
el = ¢l o(t =sgloc)/Zcescl =exp (€1 =cloc)/cucl)
ul =yl et muloe)/Zuscel =exts (€t =uloc)/uscel)
continye

¢l = ¢l =(ngamrp =noLe) wean ((t =gloc)/escl) =naty nionr fengl)
ul ® ul s(nganp =nout) mean ((t =yuloe)/uscl) =moty wip=~ (uszt)

pir v =g #{cl =ul)

syn = (09(a) =ulo¢ =wp »uscl
sgn = abs (sqan) Zsnn

r = ggn wpart (abs (xlr))

e oy CAlCulote tne derivatives 0 the (o Lihelincot at
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MAKING FISHER'S EXACT TEST RELEVANT

Paul H. Thrasher
Engineering Branch
Reliability, Availability, and Maintainability Division
Army Materiel Tast and Evaluation Directorate
White Sands Missile Range, New Mexico 88002-5175

ABSTRACT

The Fisher-Irwin Exact Method is made relevant by in¢luding g-values in
the analysis. Q-values are post-test Type II risks. They provide information
which complements the Type 1 risk provided by the p-.value. Reporting both the
p-value and relevant g-values enables managers to base decisions on both types
of risks, For references on gq-values, see four papers by Thrasher in the
Proceedings of the Thirtieth through Thirty-Third Conferences on the Design of
Experiments in the Army Research, Development, and Testing, U.S. Army Research
gff1ceézf3oo South Miami Boulevard, Research Triangle Park, North Carolina

7709-221%.

Q-values are normally calculated using the same algorithm used to find
pre-test Type Il errors. The g-value calculation inputs are normally (1) the
p-value instead of the pre-test Type I risk, (2) the sample size actually used
instead of the samnle size planned, and (3) the same relevant values of the
parameter considered in the pre-test Type Il risk calculation, Since the
Fisher-Irwin Exact Method doesn't historically have a design stage, there is
no pre-test algorithm available for modification. This paper develops the
necessary algorithm by extending the p-value calculation based on the binomial
rather than the hypergeometric distribution,

The g-value equations are developed and their mathematical properties are
examined. Computer programming methods are discussed., Examples are provided
for sample sizes both (1) small enough that a hand-held calculator can be used
and (2) large enough to require a digital computer. Numerical results are
interpreted from the viewpoint of a manager that must balance non-zero Type 1
and Type Il risks,

INTRODUCTION AND OBJECTIVE

The Fisher-Irwin Exact Method 1s a quick and straightforward technique of
comparing two samples of dichotomous items. The normally reported statistic
from this test is the p-value, The p-value is the probability of being wrong
in marginally rejecting a null hypothesis that the two samples are from one
population, In practice, managers conclude that the two samples are from
different populations if they believe the p-value is sufficiently low.

This method of analysis has not %ained universal acceptance. The
reluctance to use this method may well be due to unbalanced reporting of
information. The p-value is used to report the Type-l error. This error is
sometimes called the producer's error, the contractor's error, or the error of
concern for the advocates of maintaining the status quo. Traditionally the
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method has not reported information about the Type-ll error. This error may
be called consumer's error, the government's error, or the error of concern
for the advocates of change,

The Fisher-Irwin Exact Method can provide relevant information about the
Type-11 error. This additional information results from calculating and
reporting g-values, Q-values are the probabilities of being wrong in
marginally failing to reject the null hypothesis when the two samples are from
different populations. Since the two populations may differ in different
ways, there is a g-value for each pair of separate populations, Managers can
use a g-value, for a relevant pair of unequal populations, as evidence for
concluding that the two samples are from thnse different populations. They
reach this conclusion if they believe a relevant g-value is sufficiently high,

This paper provides equations for and examples of calculating (1) the
p-value and (2) g-values for the Fisher-Irwin Exact Method using a one-sided
analysis., This one-tailed analysis is used to reject a single population in
favor of two populations that differ in the direction indicated by the data.

This paper also discusses a digital computer program. This program has
been written to (1) handle the necessary voluminous calculations for large
sample sizes, (2) retain the analyst's identification of the two measurement
samples and the two mutually exclusive and exhaustive categories, and (3)
provide an report from which a manager can decide if future actions shauld be
based on one or two populations,

The Fisher-Irwin Exact Method may be implemented in different ways. At
the cost of redundancy, this paper uses more than one approach to illustrate
different viewpoints.

P-VALUE CALCULATION
The data for the Fisher-Irwin Exact Method, often called Fisher's Exact
Test, consists of four numbers. They and their sums are normally arranged in
a square array. The following array has double entries to illustrate both the
general situation and a specific example:

Category 1 = Success: Category 2 = Failure: | Sum:

Sample I = Development: r=19 Ner=2 n=21
Sample II = Production: R-r=12 (N=n)=(R=r)=3 N-n=l5
Total: R=31 “N-R=b | N=36
Since the choices of Samples I and I and of (ategories 1 and 2 are both B

arbitrary, there are four possible ways the data can be arranged, The
ambiguity has been removed from the above table by naming the samples and
categories to make (1) ny(N-n) and (2) r/ny(R-r)/(N-n).

There are two methods of calculating the p-value. The best known uses .
the hypergeometric distribution, The second uses the binomial distribution. '
Both are described and illustrated in pac~s 195-203 of Bradley, James, V.,
Distribution-Free Statistical Tests, Pre¢: ic.-Hall, Inc., 1968.




Hypergeometric Approach:

The hypergeometric approach is based on a population of N items which is
split into two samples of sizes n and N-n, The null hypothesis is that the
difference between the R and N-R items of the two categories did not influence
the sample selection. The probability of obtaining the data is the ratio of
(1) the number of ways items from one category can be chosen for the two
samples to (2) the number of ways items of this category can be chosen from
the total population. Thus

nCr N-nCR-r
P[Obtaining the Data) » e ——m

NCR

where 1CJ is the number of ways of choosing j items from i items. Both 1CJ
and {Ci.j are found from the following relation of factorials:

il
IR B e T Ewryy

The p-value is the probability of obtaining the data or more extreme
partitions of the N-R items of Category 2. (More explicitly, the p-value for
the one-sided or one-tailed test is the prcbability that the partition of the
N«R items will be as unbalanced as the data in the direction that the data
suggests.) For the specific example, the p-value is

21C2 1503 \ 2161 15C4 ) 2160 15C5

p-value =

36C5 36C5 3605
21| 15! 211 15! 211 151
21 191 3112l 11200 4l 11l ol 2l 5l 1ol
361 361 361
51 311 51 31! 51 311

= ,253 + .076 + .008 = ,34

A formal expression for the hypergeometric approach may be written in two
ways. Considering the possible distribution of the N-R items of Category 2
yields one of the two following equations:
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if (1) n-r is less than expected because n-r¢n[(N-R)/N] and (2) myp is
the minimum possibla number of items in Sample I from Category 2,

n-
p-value = T 10y NanCNaR-1 7 NONR:
1=m12

if (1) ner is more than expected because n-ryn[(N-R)/N] and (2) Mpp 1s the
max imum possible number of items in Sample I from Category 2,

M2
D-VQ]U& = 1 é nC-| N-nCN~R-1 / NCN-R‘
mN.r

By considering the distribution of the R items of Category 1 instead of the
N-R 1?ems of Category 2, this formal expression is written using two other
eguations:

1f (1) r 1s less than expected because r¢n[R/N] and (2) my; is the minimum
possible number of items in Sample I from Category 1,

,
p-value = ¥ Cy n.nCr.y / NGRS
t=m1

if (1) r is more than expected because ryn[R/N] and (2) Myp 1s the maximum
possible number of items in Sample I from Category 1,

M1
p-value = 12 nC4 N-nCr-1 / NCR:
ur

Binomial Approach:

The binomial approach 1s based on an infinite population from which two
independent samples are taken. Althcugh the binomial parameter of the
distribution of Category 1 items may be estimated by R/N, it is raally
unknown, Fortunately for the p-value calculation, this parameter will cancel
from the equations regardless of its value. Denoting this binomial parameter
by p allows the probabilities of obtaining the two samples to be written as

P[r;n,p in Sample 1] = ,C. " (1-p)™" and

P[R-r;N-n,p in Sample I1] = y_ Ca_. PR™T (1-p) (N-N)-(R-r)
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With the restriction that these two samples are independent, the probability
of obtaining both samples is the product of the two above equations; this
reduces to

P[Obtaining both Samples] = .C. N.nCR.p R (1-p)N-R,

The probability of obtaining one big sample size of N with R p-type
observations is

P(R;N,p in Combined Sample] = \Cp pR (1-p)N'R.

Finally, the conditional probability of obtaining the two samples given that
the combined sample has been obtained is

P[Both Samples]
P[Combined Sample]’

PL(r in n) and (Rer in N-n) | (R in N)] =

" This equation is expressed in terms of the data by division of the two

previous equations. The result is

0 NenCrep PR (1=p)N-R nCr NenCRar
=

P[Obtaining the Data] =

NCR

This 1s the same equation as was obtained using the hypergeometric approach
and the rest of the calculation of the p-value proceeds identically.

The binomial equations in the above paragraph may be illustrated and
clarified by using (1) the data from this discussion's specific example and
(2) the point estimate of p given by R/N=31/36=.861, The result is

P[19;21,.861 in Sample I] = 51Cyq (.861)19 (1..861)2119 u 23,
P[12;15,.861 in Sample I11] = 15Cy, (.861)12 (1-.861)15-12 o 203,

PLObtaining both Samples] = 51Cqq9 15C1, (.861)31 (1..861)36-31
- 0479 = (.236)(.203),

335




P[31;36,.861 in Combined Sample] = 35C3; (.861)3! (1-.861)36-31
= ,189, and by dividing equations

PL(19 in 21) and (12 in 15) | (31 in 36)] = .0479/.189 = .253,

The value of .253 is obviously the same intermediate result as was obtained in
the hypergeometric approach, In fact, any value of p yields .253.

It s 11lustrative and useful to obtain P[31;36,.861 in Combined Sampie)]
without the assumption that all 36 1:ows were selected from one population.
This is done by using the facts that (1) Sample I and Sample Il were obtained
independently and (2% the 31 items in Category 1 could have been distributed
between the two samples in different ways. The calculation is summarized in
the following table. The starred row of this table corresponds to the data
and three intermediate results from in the preceeding paragraph.

R r' Rer' P[r';21,.861] P[R-r';15,.861] P[r';21,.861]P[R~r';15,.861]

1 21 10 0433 .0348 .00151
31 20 11 147 .0981 0144
31 19 12 236 203 0479 *
1 18 13 242 .290 .0700
31 17 14 175 257 0450
31 16 15 .0961 106 .0102
lIBg

The last column contains the probabilities of the different ways that the 31
items can be distributed, The sum of this column is the probability of having
31 items from Category 1 in the two samples. The value of ,189 obviously
agrees with the shorter calculation in the preceeding paragraph., A modified
version of the longer calculation of this paragraph will be needed in the
calculation of g-values.

Before calculating y-values, it is illustrative and useful to obtain the
p-value from the table of the preceeding paragraph. Note first that the ,0479
in the last column of the starred row corresponding to the data agreas with
P(Obtaining both Samples] from the short binomial calculation of two
paragraphs ago. Note second that the entries above .0479 in the table
correspond to probabilities of obtaining more unlikely partitions than the
data, Using these two facts yields

p-value = P[Rejecting | Rejection Should Not Occur]

.00151 . 0144 N .0479
.189 .189 .189

= '34!
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This result of ,34 does not depend on the number used for p, This may be
seen by (1) calculating another table using any p other than 31/36=,861 and
(2) summing the probabilities of obtaining partitions as extreme as the data,

This last method of calculating the p-value emphasizes that the data are
viewed marginally, The data are viewed as unbalanced just enough to warrant
rejection of the single-population hypothesis.

Q-VALUE CALCULATION

Q-values, like the p-value, consider the data to be just sufficiently
unbalanced to warrent rejection of the single-population hypothesis. While
the pevalue is the probability of getting results at least as unbalanced as
the data, g-values are the probabilities of more balanced results.

For Fisher's Exact Test, g-values cannot be calculated by using the
hypergeometr ic approach., All g-values are conditional probabilities with the
condition being that two different populations provided the two samples. Thus
g-valuas must be calculated by using the binomial approach with different
binomial parameters, py and pyy, for the populations of the two samples. If
desired, these two pardmeters may be replaced with py and k where ke=p /pII°
Most g-value calculations are functions of only one parameter and len
themselves to a two dimensional power curve representation, For the Fisher-
Irwin Exact Method, there are two parameters so the representation must take
the form of a three dimensional power surface. Any specific point on this
surface does riot exhibit as much information as the entire surface. To be
specific in the following calculation however, p; and pyp will be taken as the
point estimates from the data, That is, the fo1}ow1ng g-value calculation
will address the error of concluding that psp,s when actually
DI'r/n'lg/ZI'.905. pI '(R-P)/(N-n)'12/15'.800. an k-pl/p 1.0905/0800.10130
This addresses the 1n£u1t1ve concern of "making the mistaﬁe of ignoring what
the data's trying to tell us.,"

Since a g-value for any specific P and Py is the probability of falisely
retaining the assumption that one p describes af] items, a g-value 1s one
minus the probability of rejecting the assumption of a single population when
there are two populations described by P and p I This can be calculated
from entries in a table of probabilities for a1{ possible values of r
consistent with N, n, and R,

The remainder of this section considers two approaches to the g-value

equation, shows that the two results are equivalent, and discusses some
general mathematical properties,
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(ategory 1 Approach:

For the specific example in this discussion, one table used to calculate
a q-value for py=19/21 and pyy=12/15 is

R r' Rer' P[r';21,.905] P[R-r';15,.800] P[r';21,,905]P[R-r';15,.800]

31 21 10 122 103 0126
31 20 1l 270 .188 .0507
31 19 12 .284 .250 0711
3L 18 13 190 231 0438
31 17 14 .0898 132 ©.0119
31 16 15 .0321 .0352 00113
UIgI

The sum of .191 on the lower right represents the probability of obtaining a
total of 31 items from Category 1 from the two samples. This probability can
be divided into entries in the ri?ht hand column to find the conditional
probabilities of obtaining possible numbers of items from Category 1 in
Samples I and [I. Taking the data and more extreme divisions of the R items
from category 1 as evidence of rejection, the q-value is found from

1 - g-value = P[Rejecting | Rejection Should Occur]

. 0711 . 0507 . 0126
191 191 191

= ,70,

Using a more conventional approach, the g-value can be found from less extreme
divisions of the R items from Category 1 to be

g-value = P[Failing to Reject|Rejection Should Occur]

.0438 . 0119 . .00113
191 191 191

= ,30.
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This procedure may be stated formally with the following equation:
P-;l , \
} PCr'snyprIP[R-r';N-n\p11]

r'=min(r')

g-value = ——
max(r')

P.;l PR'.;"\
r._mgn(r.) Cr'inypyIP[R=r'iN-n\py;]

where min(r') and max(r') are the minimum und maximum values of r' allowed by

the constraints imposed by fixes vaiues of N, n, and R, Increasing of r' is
1imited by the total size of bctn Sample I and Category 1. That is, r' must
?1mu1taneous1y satisfy r'¢n and '¢R. Thus the upper 1imit on the above sum
$

max(r') = min(n,R) .

Decreasing of r' is 1imited by the requirement that two measurements must be
non-negative. Possible measurements of Category 1 items in Sample I and
Cate?ory 2 items in Sample I! lead to r'30 and (Nen)~(R=r')30 => r',n+R=N,
Considering the other two possible measurements leads to four other
conditions: Rer'¢R, R=r'¢N=n, n=r'¢n, and n«r'¢N=-R. These four conditions
are equivalent to the first two., Thus the lower 1imit of the above sum is

min(r') = max(0,n+R=N).

The final form of the Category 1 equation is thus
r=1 \
% PLr'sn,ppJPLR=r';N-n,py ]
r'smax(0,n+R=N)

g-value = .
min(n,R)

8 PLr'sn,pyIP[R=r';N-n,p1 ]
r'=max(0,n+R-N)
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Category 2 Approach:

Using Category 2 instead of Category 1 leads to the following table:

N-R n-r' (Nen)=(Rer') P[ner';21;2/21] P[(N=n)=(R-r');15,3/15] P[Both]

5 0 5 122 .103 .0126
5 1 4 .270 188 .0507
5 2 3 284 . 250 0711
5 3 2 .190 231 0438
5 4 1 .0898 132 0119
5 5 0 .0321 .0362 00113
lIgI

Tnhe numbers in the r1%ht three columns are the same as in the previous table
used in the Category 1 approach. The calculation proceeds as before but the
indices in the summation appear differently:

P[n'r.;alg .0952]?[(N-n>-(R-r" );15‘ 0200]
- .I
1 -« gq-value = nor’ 20

§ Pn=-r';21,.0952]P[ (N=n)=(R=r');15,,200]
Ner'n(

. 0126 . 0507 . 0711
191 191 191

= ,70 or

g PLn=r';21,.0952]P[ (N=n)=(R=r');18,.200]
P'e
g-value = nres

P[n-r';21,.0952]P[ (N=n)-(R=r');185,.200]
n-r'sQ

(438 . 0119 . ,00113
191 191 191

= ,30.

This procedure may be stated formally with the following equation:

max(ner')

Pn=r'iny1-pyJPL(N-n)=-(R=r') N-n,1-p ]

n-rfun-r+l

max(n-r')
3 Pln-r*;n,1-p  JPL(N=n)«(Rer');Neny1upy ]

min{n-r')

g-value =




where min(n-r') and max(n-r') are the minimum and maximumn possible
measurements of Category 2 items in Sample 1. By arguments similar to those
used in the Category 1 approach, n-ri¢n and n-r'¢N-R imply that

max(nr') = min(n,N=R)
and n=ry0 and R«r's0 =& n-r'yn=-R imply that
min{n-r') = max(0,n-R).

The use and interpretation of this result must of course be done 1n
conjunction with na(N=n) and r/np(R-r)/(N-n). Interpretation must recognize
that the arrangement of the data in a standard format may or may not select
Category 1 as the category of primary interest and/or Sumple I as the first
sample drawn and/or tested.

Equivalency of Methods:

Although the equations from the Category L and Category 2 approaches
appear quite different, they are equivalent., By using the binomial
prob?2111ty relation Pf1;m,p]-P[m—1;m.1-p]. the Category 2 equation may be
rewitten as

min(n,N-R}
) PLr'sn,ppIP[R=r' Nen,pyy]
Nner'mnapr+l

-value
g-vatue = min{n,N-R)

PLr'sn,ppIP[Rer iNen,p11]
n-r'smax(0,n-R)

The 1imits on the summations may be rewritten by using min{m,M)=-max(-m,-M),
k+max (m,M)=max( k+m,k+M), and k+min{m,M)=min{ k+m,k+M) to yield

max(0,n+R=N)
P[r';n.pI]P[R-r" $Nen lp“]
rlupeal
g-value = .
max(0,n+R=N)
PLr'sn,pyIP[Rer'sN-n,p;]

r'smin(n,R)

By reversing the summation 1imits to correspond to the normal practice of
summing from low to high indices, this equation becomes the Category 1 result,
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Range, Sum with P-Value, and Symmetry:

The g-value, 1ike any other probability, is bounded by zero and one.
This is verified for the Category 1 equation by splitting the sum in the
denominator into two sums which first sum from r'-min(r‘?-max(o.n+R-N) to
r'ar-l and then summing from r'=r to r'=max(r')emin(n,R). Dividing both
numerator and denominator by the sum in tha numerator then yields

1

g-value =
min(n,R)
PLr'snyprIPLR-r";N=nyp 1]
r'lap
1+ .

r=l
P[r'»n'pI]P[R'r'bN‘nopII]-

r'-max(B.n+R-N)

Since this equation's ratio of the two sums is never negative but it will be
infinite if the data yields rwmax(0,n+R-N), g-value 3 0. Since this ratio can
be 0 by choosing p; and pyy equal to 0 or 1, g-value ¢ 1.

When py equals pyy, the g-value is one minus the p.value. This occurs
because the possible values of r' are divided into two mutually exclusive and
exhaustive sets. One sat contains possible measurements as unlikely or more
unlikely than r. The other contains values of r' more 1ikely than r, These
two sets identify conditional probabilities that are summed to find the
p-value and g-value. The p-value summation uses the unlikely set with both Py
and pr; equated to any common probability. The g-value summation uses the
11ke1§ set with any values of py and py;. The mutual exclusiveness and
exhaustiveness of the two sets Jequire Ehat p-value + g-value = 1 when pr=pqy.

For the Fisher-Irwin Exact Method, the g-value {s symmetric about the off
diagonal in a plot of p; versus pyy. That is, synmetry is expressed by
g-valua(N,n,RyryppyPyrp) = g=value(N,nyRyryl-py,lepy).

This may be seen by app1y1na the binomial equation P[1;m,p] = ,C, p1 (l-p)m'1
to the Category 1 equation in a series of three equations:

rel

r'-max(g,n+R-N)
m1g(n.R)

PLr'snyppIPIR-r";Nenyp]

g-value =
7 P[r';nlpI]P[R'P'tN'nopI[]
r'smax(0,n+R-N)




i nbet P (LopD)™ ™ Rt PR (Leppp)NeneReE

r'=max( % n+R-N)
R)

min(n '

' ot Rer -neRer!
'-max(% AHRN) nCer P1" (1-P)™" NunCRopr PII (1-pgq)NneRer

: rel
(No r' Factor) ) et NenCropt P17 (Lep) " R (Lep)”
r'=max(0,n+R-N)
rel

r'-max(B.n+R-N)

(No r* Factor) nCrt NenCRort PIT (Lop) T P (Lopp)"

where the (No r' Factor) is (l-py )n P11 R (1-p )N'"'R. This constant has been
factored from each term of the sun over r. L}ter canceling this factor from
the equation, the symmetry is evident because substituting -pyp for pp and
1-p; for ppg yields the same, equation,

The q -value for the Fisher-Irwin Exact Method also is symmetric in n and
. ?fp { ng 1Cd 1/31(1-3)1 to the above equation and canceling nl and
Nen el

ril 1 Cpp (L-prp) "
r'amax(0,n+R=N) 'l (ner')l (Rer') ] (NeneRer')l _(l-pI) pIIJ

q-value = -
min(n,R) ! mpy (1-p1°

r'-max(é.n+R-N) rtl(nert)l (Rert) 1 (N-nRert) 1 [ (1-pp) Pypl

Substitution of n for R and R for n yields the same equation. Thus symmetry
1s expressed by

q'Vd1 UE(N.H.R.Y‘ ’pI 'pII) - q-Vd1 Ue(N. R.n .l” 'pI .pII) [

This equation reflects the mathematical arbitrariness in identifying samples
and cate?ories. The samples and categories normally are distinguished

physically; but they are interchangeable mathematically.




RECAPITULATION AND INTERPRETATION

The pevalue and a ralevant g-value can provide influencing factors for
management., If the p-value is lower than the risk allowed for the proponent
of a single population, management is inclined toward the decision that two
populations exist., If a relevant g-value is higher than the risk that the
proponent of two populations is willing to take, management is also inclined
toward the decision that two relevant po$u1at10ns exist. On the other hand, a
high p-value or low relevant gq-value inclines management toward the decision
that there is one population,

Management will quite often be influenced by factors other than the
p=value and 2 relevant g-value. A subjective decision-makirig process will
naturally be used to consider all factors, The extremity of the lowness or
high?ess of the p-value and a g-value provides the subjective weight for these
two factors.

[f management cannot determine threshold risks to indicate two
populations when the p-value is bhelow and a g-value is above these thresholds,
an alternate approach is to compare the p-value and a g-value. Management can
set & threshold ratio of Type Il to Type I risks and compare a ratio of
g-vatua/p-value to this threshold. Two populations are then indicated if a
ratin of g-value/p-value is too high., In a subjective decision-making process
considering many factors, the extremity of a g-value/p-value ratio provides
the subjective waight of the Fisher's Exact Test factor.

Management should determine which two populations are relevant, Factors
other than the data may suggest specific populations. Management should
consider a g-value for each and every pair of relevant populations. If the
analyst is not provided with the p; and pl% for any relevantly different

populations, the report to management should include a table of g-values for a
wide range of p; and P11

For the primary example in this discussion, .34 is the p-value and .30 is
a g-value for the two populations suggested by the data. If these two
populations with py=.9 and py;=.8 are relevantly different, the two risks of
.34 and .30 provide the basis for action. If the existence of these two
poputations 1s considered as positive, .34 is the probability of making a
false positive decision. Similarly, considering the existence of only one
population as negative implies that .30 is the probability of making a false
negative decision,

If .34 and .30 are believed sufficiently low and high for probabilities
of false positives and negatives respectively, future action 1is based on the
existence of two populations with with p; and py; estimated by .9 and .8, If
.34 and .30 are believed sufficiently high and *ow, future action 1s based on
a single population.
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For this example, .30/.34=1/1.1=,9 is a ratio of g-value/p-value.
Subject to the relevancy of py=.9 and prr=.8, 1/1.12.9 1s the ratio of risks
of making false negative and }alse posigsve decisions, Future action is based
on two populations if 1/1.1=,9 is believed sufficiently high, Similarly,
future action is based a single population if 1/1.1=.9 is believed
sufficiently low,

If the p-value and a g-value provide conflicting or indeterminate
indications that are unresolvable, the immediate future action 1s to do
additiona) testing, Additional testing should provide more definitive
information by yielding either a low p-value and a high g-value or a high
p-value and & low g-value, Naturally increasing the sample sizes may not
yield a proportional increase in all the data; but if additional testing
actually doubled all the data in this paper's example, the rasults would be
.18 for the p-value, .35 for a g-value, and .35/.18=2 for a qwvalue/p-value
ratio corresponding to py=.9 and pyy=.8. This possible decrease in the
p-value, increase in a g-value, ané increase in a ratio of g-value/p-value
would increase the tendency to base future actions on two populations,

COMPUTING METHODS AND RESULTS

A digital computer program has been written in Pascal/3000 to facilitate
the p-value and g-value analysis of the Fisher-Irwin Exact Method,

Two related manipulations are useful in extending the range of data which
ylelds g-values without computer overflows or underflows. The equation for
the g-value can be rewritten as

r=l C (py (1.puﬂ r!
r'-max(g.n+R-N) r'l (n=r')l (Rer')! (Nen<Rer')l _(l-pI) P11 ]

g-value = —y
min(n,R) c pr (3-ppyp)
) r'l (ner')! (Rer')l (N=n<Rér')l | (1-pq) ppgd

r'=max(0,n+R-N) -

where C is any constant. The computer program can assign C with a value which
hinders the summed terms from exceeding the computer's working range, To make
this assignment without overflowing or underflowing the computer, each term
must be considered as

C e (A-p1p) " i}
[(1mp1) pII] exp[ In(TERMS) ]

r'l (ner')}! (Rer') | (Nen-Rér')l




nere the expression In(TERMS) in the exponential is
In(TERMS) = 1n[C]

+ r'[In(pg) + In(l-pyy) = In(l-py) = In(ppy))
« In[r'!1] = In[{n=r*)1] = In[(R-r*)!] = In[(N-n-R+r')!1].

The constant C can be salected to keep 1n(TERMS) within the computer's range
for x in exp(x). (e.g. -176 to 176). For any value of r', this selection can
then be used to force C exp(In(TERMS)) into the computer's operating range
(e.g., 86(10)~78 to 1,15 (10)77). Naturally this programming technigue is
successful only if r' doesn't change too much in the summation between
max(0,n+R=N) and min(n,R).

The range of computer calculations for the p-value can bhe extended by
using logarithms. One useful form of the p-value equation is

W
p-valye ‘2 12 explIn{,Cy) * ln(N_nCy) - 1n(NCz)]
ay

where the factors v, w, X, ¥, and z are dependent on r, R, and N according to
the following table:

If R<IN-R) If Ry(N-R)
Factor If R<n If Ryn 2 (N-R)<(N-n) If (N=R)5(N«n)
v r r 'N-n)=~(K=r) (Nen)<(Rer)
W R n N<R N=n
X i i N-R=1 N-R=~ 1
Y R-1i =1 i i
z R R N-R N-R

The computer program operates from a terminal, At the start of the
prcgram, the user selects either the terminal screen or a printer for the
program output, The information in Figure 1 fhen aypears on the screen, This
provides the user with a brief summary of the analysis and asks the user which
four independent variables will be entered. Figure ¢ provides an exampie of
the terminal screen after the output has been directed to a printer and the
user has chosen to enter N, i, R, and r, Figures 3a and 3b contain the output
for this input. Correspondingly, Figures 4 and 5 show input and output -hen
the user has entered r, n-r, R-r, and (N-n)-(R-r). Finally Figure 6 shows an
example with both input and output on the terminal screen. For this example,
the input produces a standard table in a different order than the data.
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Some results from the outputs in these figures (and similar computer
executions) are compiled in the following table. A1l possible measurements of
r for N=36, n=21, and R=31 are included. The tabulated g-values are
referenced to ¢ and 4 instead of py and py;. This 1s necessary because the
computer places the data in a stanéardly ordered table sometimes making pp=g
and pry=¢ and sometimes resulting in py=y and Prre. ‘

point-estimates q-value for
to replace .861
point g=*.8 9=.85 ¢g=.87 g=.9
r  p-value 8 Y estimates 42,9 g4=.87 g4».85  4=.8
16 .054 .762 1.000 .000 791 925 .962 993
17 .292 .810 .933 .249 . 381 .644 . 766 .924
18 .663 . 857 .867 . 306 098 274 .407 .682
19 . 337 .905 .800 .297 . 902 728 .593 .318
20 .084 .952 733 .241 . 988 .941 884 690
21 .008 1.000 667 .000 .999 .995 .987 941

This table emphasizes that management needs to determine relevantly different
populations instead of just considering the point-estimates suggested by the
data, As expected, the extreme r measurements of 16 and 21 lead to low
p-values indicating two populations. The two populations indicated however,
are not those su?gested by the point-estimates of g and 4. (¢ and 4 are the
.binomial probabilities that describe the two populations: they replace the
common-population point-estimate of 31/36=,861.) The g-values for those
point-estimates are identically zero. Although every manager is free to
determine how high a g-value needs to be for a two population decision, these
are low by any standard., Management must realize that no amount of testing
can prove that anything is either completely perfect or worthless, Instead,
more reasonable values of g and ¢ must be considered. If g=.8 and ¢=.9 are
considered for r=16 (or g=.9 and 4=.8 for r=2l), the g-value of ,791 (or .941)
fs quite high, Even higher q-values are obtained when ¢=.85 and ¢=.87 are
considered for r=16 (or ¢=.87 and ¢=.85 for r=21), This reflects the fact
that it's easier to say two things are different if they don't have to be very
different. Considering possible populations for which g and 4 are on opposite
sides of the common-population point-estimate of 31/36=,861 from the point-
estimates (e.g. considering ¢=.9 and ¢=.8 for relg or g=.8 and ¢=.9 for r=2l)
lead, to very high g-values. This re$1ects the compound fact that (1)
obtaining data biased in opposite direction from two existing populations is
extremely unlikely so (2) the existence of such data strongly implies more
than one population, Less extreme but similar results are obtained for r
measurements of 17 and 20. An r measurement of 18 indicates one population
unless management is concerned about very extreme alternate populations.
Finally an r measurement of 19 indicates two populations if management is
careful about what those two populations are.
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. The dependence of both the p-value and g-value on the number nf
measurements is i11lustrated by the following example, Four measurements are
assumed to yield values of N, n, R, and r given by {NI'NZ’N .N“} =
{20,490, 80,160}, {"1’" .0} = {10,20,40,80}, (R 'Rz’R .R“} = {17.34,68.136},
and {rl,rz,r?.r“} . {5.1 ,3%,72}. The second, tn*rd ana fourth measurements

are just multiples of the first. A1l four of these hypothetical measurements
provide point estimates of ¢ and ¢ of 9/10=.9 and (17-9)/10%.8 respectively.
The intericr of the following table contains sets of q-values from four

executions of the computer program., E£ach set has the g-value for the smallest
sample size first and the largest last.

.86  {.279,.365,.447,.526}  {.362,.472,.595,.721 444, 599, .752, ,885
.90 {,180,.217,.232,.221 .237,,303, .356, 397 1316, .421,.525,,633
.94 [.084,.082,.059,.027 .118,.127, 111, .074 .169, .201, . 209, ,192

The corresponding set of p-values 1s é.SOO..331..174..060;. Note (A) that
increasing the sample size decreases the p-value and incréases the g-value for
o=.9 and ¢=.8. Thus increasing the sample size, if the data remains
proportionate, increases the justification for deciding that two population
ylelded the two samples. Note also (B) that the p-value has a more pronounced
change than the g-values, Thus the p-value is more sensitive than the
g-values. A unusually high gevalue thus has at least as much significance as
an unusually low p-value, Note finally (C) that increasing the sample size
when ¢=,90 & ¢%.76, ¢=.94 & ¢~.76, ¢=.94 & 4=,80, and g=.94 & 4=.84 eventually
leads to a decrease in the q-value. This corresponds to universal measurement
implying exact results. (This large-measurement eftect does not occur for
o=.86 & ¢=.76, 0=.86 & ¢=.80, o=.86 & ¢=.84, and ¢=.90 & ¢u.84 because they
are on the opposite side of the point estimate from the extreme identified by
the alternate hypothesis,)

The program is designed so the user can keep track of a sample of
prominence and a category of interest. This enables the user to enter and
anal yze management's relevantly different populations. For example, consider
the hypothetical case analyzed in Figures 7a and 7b., Suppose that a field-
fired missile is being developed., Enough tests have been made on the initial
design to obtain 107 hits and 14 misses. A set of shorter missile fins in
proposed to make the field-assembly faster. A short series of tests on the
short-fin version yields 11 hits and 3 misses., The short-fin test is
prominent in the mind of the missile designer; the short fins should not be
used 1f they significantly degrade the missile's performance, Figures 7a and
7b contain the input and terminal-screen output of an analysis using the
Fisher-Irwin Exact Method. The first entry into the computer, 11, identifies
the short-fin test as the sample of prominence and hits as the category of
interest, The p-value, .249, is somewhat low but the advocates of fast
assembly with short fins might claim that ,249 is not close enough to zero to
warrant the conclusion that short fins have degraded the missile's accuracy.
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The g-value for ¢=11/14=,786 and =107/121=.884 is .375. That is slightly
higher than the p-value but it might not be large enough justify not using the
short fins. If management sets the desired requirement at ¢=,900 and decrees
that ¢=.850 is an unacceptable accuracy rate, the last table on Figure 7b
provides a basis for decision. The g-value for ¢=.900 and 4=.850 is ,8628.
Since this 1s twice the p-value, mana?ement has a fairly strong basis for not
using the short fins, If management leaves the desired requirement at .900
and raises the unacceptable level to .890, the g-value increases to 706, The
argument for rejecting the short fins is thus quite strong 1f .890 is really
an unacceptable accuracy rate, : ,

SUMMARY

The p-value and g-value analysis of the Fisher-Irwin Exact Method has
been developed, The p-value equation has been derived using two techniques:
hypergeometric and binomial, The binomial technique has been extended to
yleld a g-value equation. This equation has been derived from two sources:
possible category one measurements and possible category two measurements.
This g-value equation has been shown to possess mathematical symmetry. The
g-value for py=pyy has been shown to equal one minus the p-value; this was
predestined for the Fisher-Irwin Exact Method because it is a general property
of the p-value and g-values. A computer program has been written. This makes
the analysis practical. Analysts can perform voluminous calculations without
approximations. Managers can consider the relative sizes and importance of
the p-value and relevant g-values. Managers can iecide if the two samples are
from one population or from two populations differing either (1) from the
combined point estimate of the population or (2) according to (A) a desired
population or standard and (B) an unacceptable population, Computer generated
reports have been provided for conmunication between analysts and managers,
The development of the p-value and g-value analysis of the Fisher-Irwin Exact
Method has reached the stuage of imnlementation,

CONCLUS [ON

The analyst has a responsibility to report all information influencing
the decision, This information should be in a form that can be understond and
used by the decision-maker, Reporting the p-value and relevant g-values
satisfies both of these conditions. The p-value and g-values provide the
decision-maker with estimates of the risks of making wrong decisions. This
makes Fisher's Exact Test relevant,
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Greetings! Welcome tc a computerized Fisher-Irwin Exact Test Analysis.

Two independent samples are initially assumed to be from a single population,
This assumption is rejected and the two sampies are considered to repraesent
two statistically different populations if management reaches two conclusions:
1) The p-value is deemed sufficiently low and

2) A g-value for relevantly different populations is deemed sufficiently high.

The g-value is the probability of falsely deciding that two populations exist.
A g-value for two relevantly different populations is the probability of
falsely deciding that those two populations are one population,

This computerized analysis does a one sided test in the direction indicated by
the data. It requires four numerical inputs determining nine numbers:

Category One (e.g. Success): Category Two (e.g. Failure): Sum:
Sample One: r ner n
Sample Two: Rer (Nen)=(R=r) N=n
Total: : R N-R N

Data héy be entered in two ways. The theoretical-statistician approach uses
"Ny ny Ry, & r", The reliability-engineer uses "r, n-r, Rer, & (N=n)-R-r)",

ENTER RELIABILITY<ENGINEER/THEORETICAL~-STATISTICIAN APPROACH "R/S"

Figure 1, Terminal screen at program initiation,




ENTER RELIABILITY-ENGINEER/ THEORETICAL-STATISTICIAN APPROACH “R/S" s

ENTER SIZE OF POPULATION "N" 36

ENTER SIZE OF SAMPLE OF PROMINENCE "n" 21

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN POPULATION "R" 31

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN SAMPLE OF PROMINENCE "r" 19

ENTER "T" FOR TABLE OF Q-VALUES, "ANYTHING ELSE" TO SKIP TABLE ¢t

ENTER "C" FOR CLOSE LOOK AT Q-VALUE TABLE IN DATA SUGGESTED REGION,
"ANYTHING ELSE" TO SKIP ¢

ENTER "M' FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS' TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E, REPLACE ¢ = 19 / 21 = 0,905) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE ¢ = 12 / 15 = 0,800),
"ANYTHING ELSE" TO SKIP m

ENTER "g" .9
ENTER "" .8

ENTER "M" FOR MANAGEMENT INOICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE ¢ = 19 / 21 = 0,905) AND THE
SAMPLE QF NON-PROMINENCE (I.E. REPLACE ¢ = 12 / 15 = 0,800),
ANYTHING ELSE" TO SKIP m

ENTER "g" .87
ENTER "¢" .85

ENTER "M* FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE ¢ = 19 / 21 = 0,905) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE ¢ = 12 / 15 = 0,800),
"ANYTHING ELSE" TO SKIP m

ENTER "g" 1
ENTER "¢" .7

ENTER "M' FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS T0 REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE g » 19 / 21 = 0,905) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE ¢ = 12 / 15 = 0,800),
"ANYTHING ELSE" TO SKIP skip

END OF PROGRAM

Figure 2, Sample of theoretical-statistician input.




ANALYSIS OF FISHER'S EXACT TEST

In the following standardly ordered table, the sample of prominence and
category of interest are identified by the user as Sample I and Category 1.

Category 1: Category 2:
Sample I: r= 19 n-r = 2 ns= 21
Sample II: R -r = 12 (Nen) « Rer)s= 3 N-n= 15
R= 31 - = 5§ N= 38
For this data, the post-test risk of a Type I error is pevalue = 0,337.

For this data's two suggested binomial parameters of the category of interest

(12, g
of a Type

19 / 21 = 0,905 and
11 error is g-value =

8,207,

12 /

15 = 0,800), the post-test risk

For other binomial parameters of the category of interest, gqevalues may be
estimated from the following table:

o\ ¢

0.050
0.150
0.250
0.350
0.450
0.550
0.650
0.750
0.850
0.950

0.050 0.150 0.250 0.350

0.663 0.956 0.990 0.997
0.182 0.663 0.866 0.946
0.058 0.389 0.663 0.827
0.020 0.210 0.456 0.663
0.007 0.105 0.285 0.483
0.003 0.048 0.158 0.314
0,000 0.006 0.027 0.075
0.000 0,001 0.006 0.019
0,000 0,000 0.000 0,001

0.450 0.580

0.999 1.000
0.978 0.992
0.917 0.963
0.809 0.903
0.663 0.804
0.491 0.663
0.314 0.483
0.158 0.285
0.048 0.106
0.003 0.007

0.650 0,750

1.000 1.000
0.997 0.999
0.986 0.996
0.958 0,986
0.903 0.963
0.809 0.917
0.663 0.827
0.456 0.663
0.210 0.389

0.850

1.000
1.000
0.999
0.997
0.992
0.978
0.946
0. 866
0.663

0.020 0.068 0.182

For binomial parameters of the category of interest near
the data, gq-values may be estimated from the following table:

9\ ¢

0.805
0.825
0.845
0.865
0.885
0.905
0.925
0.945
0.965
0.985

Figure 3a

0.740

0.504
0.446
0.384
0.318
0.251
0.183
0.120
0,064
0.023
0.003

0.700

0.418
0. 362
0.304
0.245
0.187
0.132
0.083
0.043
0.015
0.002

0.720

0.460
0.402
0.342
0.280
0.217
0.156
0.100
0.052
0.018

0-
0.
0.
0.
0.002 0.

0.760 0,780 0.800 0.820 0.840

0.551 0.600 0.650 0.702 0.753
0.493 0.543 0.595 0.649 0,705
0.429 0.479 0.532 0.589 0.648
0.361 0.409 0.461 0.518 0,580
0.289 0.333 0.382 0.438 0.500
215 0.253 0.297 0,348 0.407
144 0.173 0.208 0.251 0.302
079 0.098 0.122 0.152 0.190
030 0.038 0.049 0,064 0.085
004 0.005 0.007 0.009 0.013

those

0.860

0.803
0.761
0.710
0.646
0.569
0.476
0.365

0.240
0,113
0.019

. First half of printer output from Figure 2 input,
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0.950

1.000
1.000
1.000
1.000
1.000
0,999
0.997
0.990
0.956
0.663

indicated by

0.880

0. 852
0.816
0.772
0.716
0.644
0.553
0.440

0.900

0.896
0.869
0.833
0.786
0.724
0.641
0.530
0.304 0.386
0.153 0.211
0.028 0.044



For binomial parameters of the category of interest near those indicated by
management, g-values may be estimated from the following table:

8\ ¢ 0.700 0.720 0.740 0.760 0.780 0.800 0,820 0.840 0.860 0.880 0.900

0. 800 0.431 0.473 0.518 0.564 0.613 0.663 0.713 0.763 0.812 0.859 0.902
0.820  0.375 0.416 0.460 0.507 0.557 0.609 0.663 0.717 0,772 0.826 0.876
0.840 0.318 0,357 0.399 0.445 0.495 0.548 0.604 0.663 0.723 0.784 0.842
0.860 0.259 0,295 0.334 0,378 0.426 0.479 0,536 0.597 0.663 0,730 0.798
0.880 0.201 0.232 0.267 0.306 0.351 0.402 0.458 0.520 0.589 0.663 0.740
0.900 0.145 0,170 0.199 0.233 0.272 0,318 0.370 0.431 0.499 0.577 0.663
0.920 0.094 0.112 0.134 0,160 0.192 0.229 0.274 0.328 0,393 0.469 0.569
0.940 0.051 0.062 0.076.0,093 0.115 0.141 0.176 0.217 0.271 0.338 0.424
0.960 0.020 0,025 0.031 0,040 0.050 0.064 0.083 0.108 0.142 0,189 0.255
0.980 0.003 0.004 0.006 0,007 0.010 0.013 0.018 0.025 0.035 0,052 0.078
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

For binomial parameters of the category of interest near those indicated by
management, ¢-values may be estimated from the following table:

o\ ¢ 0.750 0.770 0.790 0.810 0.830 0.850 0.870 0.890 0.910 0.930 0.950

0.770 0.617 0.663 0,708 0.753 0.797 0.839 0.879 0.914 0.945 0.969 0.987
0.790 0.568 0.615 0.663 0.711 0.759 0.807 0.852 0.893 0.930 0.960 0.982
0.810 0.513 0.561 0,611 0.663 0.715 0.767 0.819 0.867 0.911 0.948 0.976
0.830  0.453 0.501 0.553 0.606 0.663 0.720 0.777 0.834 0.886 0,932 0.968
0.850 0.389 0 436 0,487 0.542 0.601 0.663 0.726.0.790 0.853 0.909 0.956
0.870 0 0.415 0.469 0.529 0,593 0.663 0.735 0.808 0.877 0.937
0.890 0.2 0.336 0.387 0.445 0.511 0.583 0.663 0.746 0.831 0.909
0.910 0.181 0 213 0.252 0.297 0.351 0.413 0.486 0.569 0.663 0.764 0.865
0.930 0.1 0.168 0.204 0.248 0.302 0.368 0.449 0.547 0.663 0.791
0.950 0.0 0.090 0.113 0.143 0,182 0.233 0.301 0.391 0.510 0.663
0.970 0.018 0,023 0.030 0.040 0.053 0.071 0,098 0.137 0.196 0,288 0.434

For binomial parameters of the category of interest near those indicated by
management, g-values may be estimated from the following table:

o\ ¢ 0.600 0.620 0.640 0.660 0.680 0.700 0.720 0.740 0.760 0.780 0.800

0.900 0.064 0.076 0,090 0.105 0.124 0.145 0.170 0.199 0.233 0.272 0.318
0.920 0.039 0,046 0.055 0.066 0.079 0.094 0.112 0.134 0.160 0.192 0.229
0.940 0.019 0.023 0.028 0.035 0.042 0.051 0.062 0.076 0.093 0.115 0.141
0.960 0.007 0.008 0.010 0.013 0.016 0.020 0.025 0.031 0.040 0.050 0.064
0.980 0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.006 0.007 0.010 0.013
1,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 3b. Second half of printer output from Figure 2 input.
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ENTER RELIABILITY-ENGINEER/THEORETICAL-STATISTICIAN APPROACH "R/S" r

ENTER "TEST ONE NUMBER OF SUCCESSES" 20
ENTER "TEST ONE NUMBER OF FAILURES" 1
ENTER "TEST TWO NUMBER OF SUCCESSES" 11
ENTER "TEST TWO NUMBER OF FAILURES" 4

ENTER "T" FOR TABLE OF Q-VALUES, "ANYTHING ELSE" TO SKIP TABLE  skip

ENTER "C" FOR CLOSE LOOK AT Q~VALUE TABLE IN DATA SUGGESTED REGION,
"ANYTHING ELSE" TO SKIP skip

ENTER "M' FOR MANAGEMENT INOICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE ¢ = 20 / 21 = 0,952) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE ¢ = 11 / 15 = 0,733),
"ANYTHING ELSE" TO SKIP m

ENTER "¢" .9
ENTER "¢" .8

ENTER "M' FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE g = 20 / 21 = 0.952) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE ¢ = 11 / 15 = 0,733),
"ANYTHING ELSE" TO SKIP m

ENTER "g" 1
ENTER "4" i

ENTER "M' FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE ¢ = 20 / 21 = 0.952) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE ¢ = 11 / 15 = 0.733),
"ANYTHING ELSE TO SKIP skip

END OF PROGRAM

Figure 4, Sample of reliability-engineer input.
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ANALYSIS OF FISHER'S EXACT TEST

Although Test One, Test Two, Successes, and Failures may be interchanged
several ways mathematically, they have physical identities, To utilize these
identities, [A] Test One (i.e. the test with 20 Successes and 1 Failure) is
taken as the sample of prominence (i.e. it 1s considered physically more
important than Test Two? and [B] Successes define the category of interest
(1.e. the most natural description of a test result is considered to be
Success instead of Failure).

In the following standardly ordered table, the sample of prominence and
category of interest are identified by the user as Sample I and Category 1.

Category 1l: Category 2:
Sample I: rs 20 ner = |1 nas 21
Sample It R =-r = 11 (Nen) « (R=-1r) = & N-nm= 15
R= 31 N-R = 5§ N= 36

For thig data, the pust-test risk of a Type | error is p-value = 0,084,

For this data's two suggested binomial parameters of the category of interest
(l.e. g = 20/ 21 = 0,952 and 2 » 11/ 15 = 0,733), the post-test risk of
a Type II error is g-value = 0,241,

For binomial parameters of the category of interest near those indicated by
management, q-values may be estimated from the following table:

8\ ¢ 0.770 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 0.900

0.800 0.785 0,815 0.843 0.869 0.894 0.916 0.936 0.953 0,968 0.979 0,988
0.820 0.741 0.774 0.806 0.837 0.865 0.892 0.916 0.937 0.956 0.971 0.983
0,840 0.690 0.726 0.761 0.795 0.829 0.860 0.889 0,916 0.939 0.959 0.975
0.860 0.628 0.667 0.705 0.744 0.782 0.818 0.853 0.886 0.916 0.942 0.964
0.880 0.556 0.596 0.637 0.679 0.721 0.763 0.804 0.844 0.882 0.916 0.948
0.900 0.471 0.511 0.553 0.597 0.643 0.690 0.737 0.785 0.832 0.876 0.916
0.920 0.374 0.411 0.452 0.496 0.543 0.59z 0.645 0.700 0.756 0.812 0.867
0.940 0.265 0.297 0.333 0.372 0.416 0.465 0.518 0.577 0.641 0.709 0.780
0.960 0.152 0.174 0,199 0.229 0.263 0.302 0.349 0.403 0.466 0.539 0.623
0.980 0.050 0.059 0.070 0.083 0.099 0.118 0.143 0.174 0.214 0.267 0.337
1,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000

OO0

For binomial parameters of the category of interest near those indicated by
management, g-values may be estimated from the following table:

8\ 4 0.600 0.620 0.640 0.660 0.680 0.700 0.720 0.740 0.760 0.780 0.800

0.900 0.302 0.332 0.363 0.397 0.433 0.471 0.511 0.553 0.597 0.643 0.690
0.920 0.225 0.250 0.277 0.307 0.339 0.374 0.411 0.452 0.496 0.543 0.592
0.940 0.149 0.168 0.188 0,211 0,237 0.265 0.297 0.333 0.372 0.416 0.465
0.960 0.079 0.090 0.102 0.117 0.133 0.152 0.174 0.199 0.229 0.263 0.302
0.960 0.024 0.027 0.032 0.037 0.043 0.050 0.059 0.070 0.083 0.099 0.118
1.000 0.000 0.000 0.000 0.000 0.GOO 0.000 0.000 0.000 0.000 0.000 0.000

Figure 5, Printer output from Figure 4 input.
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ENTER RELIABILITY-ENGINEER/THEORETICAL-STATISTICIAN APPROACH "R/S" s

ENTER SIZE OF POPULATION "N" 36

ENTER SIZE OF SAMPLE OF PROMINENCE "n" 21 -

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN POPULATION "R" 31

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN SAMPLE OF PROMINENCE "r* 18

ANALYSIS OF FISHER'S EXACT TEST

In the following standardly ordered table, the sample of prominence and
category of interest are identified by the user as Sample I and Category 2.

Category 1: Category 2:
Sample I: rs 3 ne-r = 18 n= 21
Sample It R=-r = 2 (N-n) - (R=-r)= 13 N-n= 15
Rm 5 N-R = 3] N= 36

For this data, the post-test risk of a Type I error is p-value = 0.663.

For this data's two suggested binomial parameters of the category of interest
(f.e. g = 18/ 21 = 0,857 and 8 = 13/ 15 =0.,87), the post-test risk
of a Type Il error 1s g-value = 0,306.

ENTER "T" FOR TABLE OF Q-VALUES, "ANYTHING ELSE" TO SKIP TABLE  skip

ENTER "C" FOR CLOSE LOOK AT Q-VALUE TABLE IN DATA SUGGESTED REGION,
WANYTHING ELSE" TO SKIP  skip

ENTER "M' FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE ¢ = 18 / 21 = 0.857) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE ¢ = 13 / 15 = 0,867),
"ANYTHING ELSE" TO SKIP m

ENTER " .8
ENTER "¢" .9

For binomial parameters of the category of interest near those indicated by
management , q-values may be estimated from the following table:

8\ ¢ 0.700 0,720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 0.900

0.800 0.158 0.184 0.215 0.250 0.291 0.337 0.391 0.452 0.521 0.598 0.682
0.820 0.127 0.149 0.176 0.207 0.244 0.287 0.337 0.396 0.464 0.542 0.630
0.840 0.098 0.117 0.139 0.166 0.198 C.237 0.283 0.337 0.403 0.480 0.569
0.860 0.073 0.088 0.106 0.128 0.155 0.188 0.228 0.277 0.337 0.411 0.501
0.880 0.051 0.062 0.076 0.093 0.114 0.141 0.174 0.216 0.270 0,337 0.423
0.900 0,033 0,041 0.050 0.063 0.078 0.098 0.124 0.158 0.202 0.260 0,337
0.920 0.019 0.024 0.030 0.037 0.048 0.061 0.079 0.103 0.136 0.182 0.246
0.940 0.009 0.011 0.014 0.019 0.024 0.032 0.042 0.057 0.077 0.108 0.154
0.960 0.003 0.004 0.005 0.007 0.009 0.012 0.016 0.022 0.032 0.047 0.071
0.930 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.004 0.006 0.009 0.015
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000

Figure 6, Input and screen output in case that alters order in table,
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ENTER RELIABILITY-ENGINEER/THEORETICAL-STATISTICIAN APPROACH “R/S" r

ENTER "TEST ONE NUMBER OF SUCCESSES" 11
ENTER "TEST ONE NUMBER OF FAILURES" 3
ENTER "TEST TWO NUMBER OF SUCCESSES" 107
ENTER "TEST TWO NUMBER OF FAILURES" 14

ANALYSIS OF FISHER'S EXACT TEST

Although Test One, Test Two, Successes, and Failures may be interchanged
several ways mathematically, they have physical identities. To utilize these
identities, [A] Test One (1.e. the test with 11 Successes and 3 Failures)
is taken as the sample of prominince (i.e. it 1s considered physically more
important than Test Two) and [B] Successes define the category of interest
(1., the most natural description of a test result is considered to be
Success instead of Failure).

In the following standardly ordered table, the sample of prominence and
category of interest are identified by the user as Sample II and Category 1.

Category 1: Category 2:
Sample I: r = 107 ne-r = 14 n= 121
Sample II: R=-r = 11 (Nen) = (Rar)a= 3 N-n= 14
R =118 N-R = 17 N= 135

For this data, the post-test risk of a Type 1 error 1s|p-va1ue = 0,249,

For tﬁis data's two suggested binomial parameters of the category of interest
(t.es g = 11 / 14 = 0.786 and ¢ = 107 / 121 = 0.884), the post-test risk of
a Type II error is q-value = 0,375,

ENTER "T" FOR TABLE OF Q-VALUES, "ANYTHING ELSE" TO SKIP TABLE t

For other binomial parameters of the category of interest, g-values may be
estimated from the following table:

8\ ¢ 0.050 0.150 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

0.080 0.751 0.981 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.150 0.154 0.751 0.926 0.976 0.992 0.997 0.999 1.000 1.000 1.000
0.250 0.022 0.429 0.751 0.897 0.959 0.985 0.995 0.999 1.000 1.000
0.350 0.003 0.190 0.516 0.751 0.884 0.951 0.982 0.995 0.999 1.000
0.450 0.000 0.064 0.289 0.549 0.751 0.880 0.951 0.985 0.997 1.000
0.550 0.000 0.016 0.124 0.329 0.559 0.751 0.884 0.959 0.992 1.000
0.650 0.000 0,00z 0.035 0.144 0,329 0.549 0.751 0.897 0.976 0.999
0.750 0.000 0.000 0.005 0.035 0.124 0.289 0.516 0.751 0.926 0.996
0.850 0,000 0.000 0.000 0.002 0.016 0.064 0.190 0.429 0.751 0.98L
0.950 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.022 0.154 0.751

Figure 7a, First half of reliability-engineer input and screen output
for hypothetical missile modification analysis.
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ENTER "C" FOR CLOSE LOOK AT Q-VALUETABLE IN DATA SUGGESTED REGION,
"ANYTHING ELSE" TO SKIP c

For binomial parameters of the category of interest near those indicated by
the data, q-values may be estimated from the following table:

o\ ¢ 0.686 0.706 0.726 0.746 0.766 0.786 0.806 0.826 0.846 0.866 0.886

0.784 0.499 0.550 0.603 0.655 0.706 0.755 0.801 0.844 0.882 0.916 0.943
0.804 0.430 0.483 0.537 0.593 0.648 0.702 0.755 0.805 0.850 0.891 0.926
0. 824 0.358 0.409 0.464 0.521 0.580 0.639 0.698 0.755 0.809 0.859 0.902
0.844 0.283 0.331 0.384 0.441 0.501 0.564 0.628 0.693 0.756 0.815 0,869
0.864 0,208 0.251 0.299 0.353 0.412 0.476 0.544 0.614 0.686 0.756 0.823

0.884 0.138 0.173 0.213 0.260 0.314 0.375 0.443 0.517 0.595 0.676 0.757
0.904 0.079 0.103 0.132 0,168 0.212 0.265 0.327 0.399 0.480 0.569 0.663
0.924 0.035 0.048 0.065 0.088 0.118 0.156 0.205 0.265 0.339 0.427 0.530
0.944 0.010 0.014 0.021 0.03L 0.045 0.065 0.093 0.131 0.184 0.255 0.349
0.964 0.001 0.002 0.003 0.005 0.007 0.012 0.020 0.033 0.053 0.087 0.140
0.984 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00L 0.002 0.003 0.008

ENTER "M" FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY 0F INTEREST IN THE
SAMPLE OF PROMINENCE (I.E, REPLACE x 14 = 0.786) AND THE
SAMPLE OF NON-PROMINENCE (I.E. REPLACE e ) 107 / 121 = 0,884),
"ANYTHING ELSE" TO SKIP m

ENTER "¢" .85
ENTER "g" .9

For binomial parameters of the category of interest near those indicated by
management, g-values may be estimated from the following table:

8\ ¢ 0.750 0.770 0.790 0.810 0.830 0.850 0.870 0.890 0.910 0.930 0.950

0.800 0.618 0.673 0.726 0.776 0.824 0.867 0.905 0.937 0.962 0.980 0,992
0.820 0.550 0.608 0.666 0.724 0.778 0.830 0.876 0.916 0.948 0.973 0.989
0.840 0.471 0.532 0.595 0.658 0.721 0.781 0.837 0.887 0.929 0.962 0.984
0.860 0.384 0.445 0.510 0.578 0.648 0.717 0,785 0.847 0.901 0.945 0,976
0.880 0.291 0.348 0.411 0.481 0.5%6 0.634 0.712 0.789 0.860 0.919 0.964
0.900 0.197 0.245 0.302 0.368 0.442 0.525 0.614 0.706 0.796 0.877 0.942
0.920 0.110 0.145 0.189 0.243 0.310 0.389 0.482 0,585 0.696 0.805 0.902
0.940 0.044 0.063 0.088 0.123 0.170 0.232 0.313 0.415 0.539 0.679 0.822
0.960 0.009 0.014 0.022 0.034 0.054 0.084 0.131 0.201 0.306 0.454 0.646
0.980 0.000 0.000 0.001 0.002 0.003 0.006 0.013 0.026 0.056 0.122 0.265
1.000 0.000 0.000 0.00C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENTER "M' FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE
THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE
SAMPLE OF PROMINENCE (I.E. REPLACE ¢ = 11 / 14 = 0,786) AND THE
SAMPLE OF NON-PROMENENCE (I.E. REPLACE ¢ = 107 / 121 = 0.884),
"ANYTHING ELSE" TO SKIP skip

END OF PROGRAM

Figure 7b. Second half of hypothetical missile modification analysis.
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PO Bex 5800
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C OONOVER, W.J.
College of Bus. Admin
Texas Tech University
Lubbock TX 79409 (806) 742-1546
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K c DAVID, H.A.
Iowa State University
Department of Statistics
ISU, Ames, IA 50011 (515) 294-7749

T,C  DOYLE, Mary
USA TROSCOM
Product Assurance
4300 Goodfellow
St. louis, M 63120-1798 (314) 2639468

C HMMP m
Texas AsM
ant of Statistics
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